array:25 [
  "pii" => "S0001731020300041"
  "issn" => "00017310"
  "doi" => "10.1016/j.ad.2019.09.002"
  "estado" => "S300"
  "fechaPublicacion" => "2020-05-01"
  "aid" => "2295"
  "copyright" => "AEDV"
  "copyrightAnyo" => "2020"
  "documento" => "article"
  "crossmark" => 1
  "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
  "subdocumento" => "fla"
  "cita" => "Actas Dermosifiliogr. 2020;111:313-6"
  "abierto" => array:3 [
    "ES" => true
    "ES2" => true
    "LATM" => true
  ]
  "gratuito" => true
  "lecturas" => array:1 [
    "total" => 0
  ]
  "Traduccion" => array:1 [
    "en" => array:20 [
      "pii" => "S1578219020300846"
      "issn" => "15782190"
      "doi" => "10.1016/j.adengl.2019.09.003"
      "estado" => "S300"
      "fechaPublicacion" => "2020-05-01"
      "aid" => "2295"
      "copyright" => "AEDV"
      "documento" => "article"
      "crossmark" => 1
      "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
      "subdocumento" => "fla"
      "cita" => "Actas Dermosifiliogr. 2020;111:313-6"
      "abierto" => array:3 [
        "ES" => true
        "ES2" => true
        "LATM" => true
      ]
      "gratuito" => true
      "lecturas" => array:1 [
        "total" => 0
      ]
      "en" => array:12 [
        "idiomaDefecto" => true
        "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>"
        "titulo" => "Machine Learning in Melanoma Diagnosis&#46; Limitations About to be Overcome"
        "tienePdf" => "en"
        "tieneTextoCompleto" => "en"
        "tieneResumen" => array:2 [
          0 => "en"
          1 => "es"
        ]
        "paginas" => array:1 [
          0 => array:2 [
            "paginaInicial" => "313"
            "paginaFinal" => "316"
          ]
        ]
        "titulosAlternativos" => array:1 [
          "es" => array:1 [
            "titulo" => "Uso del aprendizaje autom&#225;tico en el diagn&#243;stico del melanoma&#46; Limitaciones por superar"
          ]
        ]
        "contieneResumen" => array:2 [
          "en" => true
          "es" => true
        ]
        "contieneTextoCompleto" => array:1 [
          "en" => true
        ]
        "contienePdf" => array:1 [
          "en" => true
        ]
        "autores" => array:1 [
          0 => array:2 [
            "autoresLista" => "C&#46; Gonz&#225;lez-Cruz, M&#46;A&#46; Jofre, S&#46; Podlipnik, M&#46; Combalia, D&#46; Gareau, M&#46; Gamboa, M&#46;G&#46; Vallone, Z&#46; Faride Barrag&#225;n-Estudillo, A&#46;L&#46; Tamez-Pe&#241;a, J&#46; Montoya, M&#46; Am&#233;rica Jes&#250;s-Silva, C&#46; Carrera, J&#46; Malvehy, S&#46; Puig"
            "autores" => array:14 [
              0 => array:2 [
                "nombre" => "C&#46;"
                "apellidos" => "Gonz&#225;lez-Cruz"
              ]
              1 => array:2 [
                "nombre" => "M&#46;A&#46;"
                "apellidos" => "Jofre"
              ]
              2 => array:2 [
                "nombre" => "S&#46;"
                "apellidos" => "Podlipnik"
              ]
              3 => array:2 [
                "nombre" => "M&#46;"
                "apellidos" => "Combalia"
              ]
              4 => array:2 [
                "nombre" => "D&#46;"
                "apellidos" => "Gareau"
              ]
              5 => array:2 [
                "nombre" => "M&#46;"
                "apellidos" => "Gamboa"
              ]
              6 => array:2 [
                "nombre" => "M&#46;G&#46;"
                "apellidos" => "Vallone"
              ]
              7 => array:2 [
                "nombre" => "Z&#46;"
                "apellidos" => "Faride Barrag&#225;n-Estudillo"
              ]
              8 => array:2 [
                "nombre" => "A&#46;L&#46;"
                "apellidos" => "Tamez-Pe&#241;a"
              ]
              9 => array:2 [
                "nombre" => "J&#46;"
                "apellidos" => "Montoya"
              ]
              10 => array:2 [
                "nombre" => "M&#46;"
                "apellidos" => "Am&#233;rica Jes&#250;s-Silva"
              ]
              11 => array:2 [
                "nombre" => "C&#46;"
                "apellidos" => "Carrera"
              ]
              12 => array:2 [
                "nombre" => "J&#46;"
                "apellidos" => "Malvehy"
              ]
              13 => array:2 [
                "nombre" => "S&#46;"
                "apellidos" => "Puig"
              ]
            ]
          ]
        ]
      ]
      "idiomaDefecto" => "en"
      "Traduccion" => array:1 [
        "es" => array:9 [
          "pii" => "S0001731020300041"
          "doi" => "10.1016/j.ad.2019.09.002"
          "estado" => "S300"
          "subdocumento" => ""
          "abierto" => array:3 [
            "ES" => true
            "ES2" => true
            "LATM" => true
          ]
          "gratuito" => true
          "lecturas" => array:1 [
            "total" => 0
          ]
          "idiomaDefecto" => "es"
          "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020300041?idApp=UINPBA000044"
        ]
      ]
      "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219020300846?idApp=UINPBA000044"
      "url" => "/15782190/0000011100000004/v1_202006060751/S1578219020300846/v1_202006060751/en/main.assets"
    ]
  ]
  "itemSiguiente" => array:20 [
    "pii" => "S0001731020300089"
    "issn" => "00017310"
    "doi" => "10.1016/j.ad.2018.09.026"
    "estado" => "S300"
    "fechaPublicacion" => "2020-05-01"
    "aid" => "2299"
    "copyright" => "AEDV"
    "documento" => "simple-article"
    "crossmark" => 1
    "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
    "subdocumento" => "crp"
    "cita" => "Actas Dermosifiliogr. 2020;111:317-8"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "es" => array:11 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">Dermatoscopia pr&#225;ctica</span>"
      "titulo" => "Lesiones anaranjadas de aparici&#243;n progresiva en cuero cabelludo"
      "tienePdf" => "es"
      "tieneTextoCompleto" => "es"
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "317"
          "paginaFinal" => "318"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "en" => array:1 [
          "titulo" => "Progressive Orange Lesions on the Scalp"
        ]
      ]
      "contieneTextoCompleto" => array:1 [
        "es" => true
      ]
      "contienePdf" => array:1 [
        "es" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 0
        "multimedia" => array:7 [
          "identificador" => "fig0010"
          "etiqueta" => "Figura 2"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => true
          "mostrarDisplay" => false
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "gr2.jpeg"
              "Alto" => 877
              "Ancho" => 2175
              "Tamanyo" => 182215
            ]
          ]
          "descripcion" => array:1 [
            "es" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">En la dermatoscopia de 2 lesiones encontramos un fondo anaranjado sin estructuras y vascularizaci&#243;n irregular de disposici&#243;n centr&#237;peta &#40;A&#44; B&#41;&#44; con una zona erosionada en una de ellas &#40;A&#41;&#46;</p>"
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "V&#46;A&#46; Gonz&#225;lez-Delgado, P&#46; Cordero-Romero, J&#46;M&#46; Mart&#237;n"
          "autores" => array:3 [
            0 => array:2 [
              "nombre" => "V&#46;A&#46;"
              "apellidos" => "Gonz&#225;lez-Delgado"
            ]
            1 => array:2 [
              "nombre" => "P&#46;"
              "apellidos" => "Cordero-Romero"
            ]
            2 => array:2 [
              "nombre" => "J&#46;M&#46;"
              "apellidos" => "Mart&#237;n"
            ]
          ]
        ]
      ]
    ]
    "idiomaDefecto" => "es"
    "Traduccion" => array:1 [
      "en" => array:9 [
        "pii" => "S1578219020300810"
        "doi" => "10.1016/j.adengl.2018.09.024"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "en"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219020300810?idApp=UINPBA000044"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020300089?idApp=UINPBA000044"
    "url" => "/00017310/0000011100000004/v3_202009220625/S0001731020300089/v3_202009220625/es/main.assets"
  ]
  "itemAnterior" => array:19 [
    "pii" => "S0001731020300053"
    "issn" => "00017310"
    "doi" => "10.1016/j.ad.2019.09.003"
    "estado" => "S300"
    "fechaPublicacion" => "2020-05-01"
    "aid" => "2296"
    "documento" => "article"
    "crossmark" => 1
    "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/"
    "subdocumento" => "fla"
    "cita" => "Actas Dermosifiliogr. 2020;111:306-12"
    "abierto" => array:3 [
      "ES" => true
      "ES2" => true
      "LATM" => true
    ]
    "gratuito" => true
    "lecturas" => array:1 [
      "total" => 0
    ]
    "es" => array:14 [
      "idiomaDefecto" => true
      "cabecera" => "<span class="elsevierStyleTextfn">ORIGINAL</span>"
      "titulo" => "Enfermedad de Paget extramamaria"
      "tienePdf" => "es"
      "tieneTextoCompleto" => "es"
      "tieneResumen" => array:3 [
        0 => "es"
        1 => "es"
        2 => "en"
      ]
      "paginas" => array:1 [
        0 => array:2 [
          "paginaInicial" => "306"
          "paginaFinal" => "312"
        ]
      ]
      "titulosAlternativos" => array:1 [
        "en" => array:1 [
          "titulo" => "Extramammary Paget Disease"
        ]
      ]
      "contieneResumen" => array:2 [
        "es" => true
        "en" => true
      ]
      "contieneTextoCompleto" => array:1 [
        "es" => true
      ]
      "contienePdf" => array:1 [
        "es" => true
      ]
      "resumenGrafico" => array:2 [
        "original" => 1
        "multimedia" => array:5 [
          "identificador" => "fig0015"
          "tipo" => "MULTIMEDIAFIGURA"
          "mostrarFloat" => false
          "mostrarDisplay" => true
          "figura" => array:1 [
            0 => array:4 [
              "imagen" => "fx1.jpeg"
              "Alto" => 947
              "Ancho" => 1333
              "Tamanyo" => 169641
            ]
          ]
        ]
      ]
      "autores" => array:1 [
        0 => array:2 [
          "autoresLista" => "J&#46; Marcoval, R&#46;M&#46; Pen&#237;n, A&#46; Vidal, J&#46; Bermejo"
          "autores" => array:4 [
            0 => array:2 [
              "nombre" => "J&#46;"
              "apellidos" => "Marcoval"
            ]
            1 => array:2 [
              "nombre" => "R&#46;M&#46;"
              "apellidos" => "Pen&#237;n"
            ]
            2 => array:2 [
              "nombre" => "A&#46;"
              "apellidos" => "Vidal"
            ]
            3 => array:2 [
              "nombre" => "J&#46;"
              "apellidos" => "Bermejo"
            ]
          ]
        ]
      ]
      "resumen" => array:1 [
        0 => array:3 [
          "titulo" => "Graphical abstract"
          "clase" => "graphical"
          "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall"><elsevierMultimedia ident="fig0015"></elsevierMultimedia></p></span>"
        ]
      ]
    ]
    "idiomaDefecto" => "es"
    "Traduccion" => array:1 [
      "en" => array:9 [
        "pii" => "S1578219020301037"
        "doi" => "10.1016/j.adengl.2019.09.004"
        "estado" => "S300"
        "subdocumento" => ""
        "abierto" => array:3 [
          "ES" => true
          "ES2" => true
          "LATM" => true
        ]
        "gratuito" => true
        "lecturas" => array:1 [
          "total" => 0
        ]
        "idiomaDefecto" => "en"
        "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219020301037?idApp=UINPBA000044"
      ]
    ]
    "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020300053?idApp=UINPBA000044"
    "url" => "/00017310/0000011100000004/v3_202009220625/S0001731020300053/v3_202009220625/es/main.assets"
  ]
  "es" => array:19 [
    "idiomaDefecto" => true
    "cabecera" => "<span class="elsevierStyleTextfn">ORIGINAL</span>"
    "titulo" => "Uso del aprendizaje autom&#225;tico en el diagn&#243;stico del melanoma&#46; Limitaciones por superar"
    "tieneTextoCompleto" => true
    "paginas" => array:1 [
      0 => array:2 [
        "paginaInicial" => "313"
        "paginaFinal" => "316"
      ]
    ]
    "autores" => array:1 [
      0 => array:4 [
        "autoresLista" => "C&#46; Gonz&#225;lez-Cruz, M&#46;A&#46; Jofre, S&#46; Podlipnik, M&#46; Combalia, D&#46; Gareau, M&#46; Gamboa, M&#46;G&#46; Vallone, Z&#46; Faride Barrag&#225;n-Estudillo, A&#46;L&#46; Tamez-Pe&#241;a, J&#46; Montoya, M&#46; Am&#233;rica Jes&#250;s-Silva, C&#46; Carrera, J&#46; Malvehy, S&#46; Puig"
        "autores" => array:14 [
          0 => array:3 [
            "nombre" => "C&#46;"
            "apellidos" => "Gonz&#225;lez-Cruz"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
            ]
          ]
          1 => array:3 [
            "nombre" => "M&#46;A&#46;"
            "apellidos" => "Jofre"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
            ]
          ]
          2 => array:3 [
            "nombre" => "S&#46;"
            "apellidos" => "Podlipnik"
            "referencia" => array:2 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
              1 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "aff0010"
              ]
            ]
          ]
          3 => array:3 [
            "nombre" => "M&#46;"
            "apellidos" => "Combalia"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
            ]
          ]
          4 => array:3 [
            "nombre" => "D&#46;"
            "apellidos" => "Gareau"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">d</span>"
                "identificador" => "aff0020"
              ]
            ]
          ]
          5 => array:3 [
            "nombre" => "M&#46;"
            "apellidos" => "Gamboa"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
            ]
          ]
          6 => array:3 [
            "nombre" => "M&#46;G&#46;"
            "apellidos" => "Vallone"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
            ]
          ]
          7 => array:3 [
            "nombre" => "Z&#46;"
            "apellidos" => "Faride Barrag&#225;n-Estudillo"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
            ]
          ]
          8 => array:3 [
            "nombre" => "A&#46;L&#46;"
            "apellidos" => "Tamez-Pe&#241;a"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
            ]
          ]
          9 => array:3 [
            "nombre" => "J&#46;"
            "apellidos" => "Montoya"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
            ]
          ]
          10 => array:3 [
            "nombre" => "M&#46;"
            "apellidos" => "Am&#233;rica Jes&#250;s-Silva"
            "referencia" => array:1 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
            ]
          ]
          11 => array:3 [
            "nombre" => "C&#46;"
            "apellidos" => "Carrera"
            "referencia" => array:3 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
              1 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "aff0010"
              ]
              2 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">c</span>"
                "identificador" => "aff0015"
              ]
            ]
          ]
          12 => array:3 [
            "nombre" => "J&#46;"
            "apellidos" => "Malvehy"
            "referencia" => array:3 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
              1 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "aff0010"
              ]
              2 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">c</span>"
                "identificador" => "aff0015"
              ]
            ]
          ]
          13 => array:4 [
            "nombre" => "S&#46;"
            "apellidos" => "Puig"
            "email" => array:2 [
              0 => "susipuig@gmail.com"
              1 => "susipuig@gmail.com"
            ]
            "referencia" => array:4 [
              0 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">a</span>"
                "identificador" => "aff0005"
              ]
              1 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">b</span>"
                "identificador" => "aff0010"
              ]
              2 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">c</span>"
                "identificador" => "aff0015"
              ]
              3 => array:2 [
                "etiqueta" => "<span class="elsevierStyleSup">&#42;</span>"
                "identificador" => "cor0005"
              ]
            ]
          ]
        ]
        "afiliaciones" => array:4 [
          0 => array:3 [
            "entidad" => "Servicio de Dermatolog&#237;a&#44; Hospital Cl&#237;nic de Barcelona&#44; Barcelona&#44; Espa&#241;a"
            "etiqueta" => "a"
            "identificador" => "aff0005"
          ]
          1 => array:3 [
            "entidad" => "Institut d&#8217;Investigacions Biomediques August Pi I Sunyer &#40;IDIBAPS&#41;&#44; Barcelona&#44; Espa&#241;a"
            "etiqueta" => "b"
            "identificador" => "aff0010"
          ]
          2 => array:3 [
            "entidad" => "CIBER en Enfermedades raras&#44; Instituto de Salud Carlos III&#44; Barcelona&#44; Espa&#241;a"
            "etiqueta" => "c"
            "identificador" => "aff0015"
          ]
          3 => array:3 [
            "entidad" => "Laboratory of Investigative Dermatology&#44; The Rockefeller University&#44; Nueva York&#44; EE&#46; UU&#46;"
            "etiqueta" => "d"
            "identificador" => "aff0020"
          ]
        ]
        "correspondencia" => array:1 [
          0 => array:3 [
            "identificador" => "cor0005"
            "etiqueta" => "&#8270;"
            "correspondencia" => "Autor para correspondencia&#46;"
          ]
        ]
      ]
    ]
    "titulosAlternativos" => array:1 [
      "en" => array:1 [
        "titulo" => "Machine Learning in Melanoma Diagnosis&#46; Limitations About to be Overcome"
      ]
    ]
    "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Introducci&#243;n</span><p id="par0005" class="elsevierStylePara elsevierViewall">La clasificaci&#243;n automatizada de im&#225;genes por reconocimiento de patrones es una rama del aprendizaje autom&#225;tico &#40;del ingl&#233;s &#171;Machine Learning&#187; &#91;ML&#93;&#41; que ofrece al dermat&#243;logo una herramienta &#250;til para diagn&#243;stico de c&#225;ncer de piel<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">1</span></a>&#46; Las redes neuronales convolucionales profundas &#40;del ingl&#233;s &#171;Deep convolutional neural networks&#187; &#91;DCNN&#93;&#41; han mejorado de manera extraordinaria la precisi&#243;n en el aprendizaje de patrones y la clasificaci&#243;n de objetos<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">2</span></a>&#44; son utilizadas de manera satisfactoria en la clasificaci&#243;n de im&#225;genes dermatosc&#243;picas de lesiones cut&#225;neas<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">3</span></a>&#46; Sin embargo&#44; la selecci&#243;n de im&#225;genes mediante ML presenta en la actualidad ciertas restricciones que evitan su uso generalizado&#46; En el presente estudio se eval&#250;an algunos de los criterios de exclusi&#243;n para la selecci&#243;n de im&#225;genes de neoplasias cut&#225;neas &#40;con especial &#233;nfasis en el melanoma&#41; por ML&#44; mencionados en trabajos recientes<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">1&#44;4&#44;5</span></a>&#46;</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Materiales y m&#233;todos</span><p id="par0010" class="elsevierStylePara elsevierViewall">Este estudio se realiz&#243; en un hospital universitario de tercer nivel especializado en c&#225;ncer cut&#225;neo&#44; localizado en Barcelona&#44; Espa&#241;a&#46; Se dise&#241;&#243; un estudio de cohorte retrospectivo donde se incluyeron de manera consecutiva 2&#46;849 im&#225;genes dermatosc&#243;picas de alta calidad de tumores cut&#225;neos&#44; obtenidas a partir de la base de datos de la Unidad de Melanoma&#44; recogidas entre el 2010 y 2014&#46; Se utiliz&#243; el sistema de microscopia de epiluminiscencia fotogr&#225;fica digital DermLite&#174; 3<span class="elsevierStyleHsp" style=""></span>Gen con una conexi&#243;n de rosca de 37<span class="elsevierStyleHsp" style=""></span>mm y una c&#225;mara Canon modelo G16&#46; Se cont&#243; con el diagn&#243;stico histol&#243;gico en 2&#46;429 de las im&#225;genes&#46; Finalmente&#44; las im&#225;genes se clasificaron seg&#250;n si cumpl&#237;an o no los criterios de exclusi&#243;n para el an&#225;lisis por ML&#44; seg&#250;n los mencionados en la bibliograf&#237;a<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">1&#44;4&#44;5</span></a>&#58; dificultad en la detecci&#243;n del borde de la lesi&#243;n &#40;ausencia de pigmentaci&#243;n&#44; ausencia de piel normal circundante&#44; presencia de pelo&#44; ubicaci&#243;n en piel volar&#41;&#44; met&#225;stasis cut&#225;nea o lesi&#243;n ulcerada&#46;</p><p id="par0015" class="elsevierStylePara elsevierViewall">Este estudio fue aprobado por el comit&#233; de &#233;tica de nuestro centro&#46; Todos los procedimientos con participantes humanos se realizaron de acuerdo con los est&#225;ndares &#233;ticos del comit&#233; de investigaci&#243;n institucional y con la declaraci&#243;n de Helsinki de 1964 y sus enmiendas posteriores o est&#225;ndares &#233;ticos comparables&#46;</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Resultados</span><p id="par0020" class="elsevierStylePara elsevierViewall">De las 2&#46;849 im&#225;genes obtenidas a partir de nuestra base de datos&#44; 968 &#40;34&#37;&#41; se consideraron elegibles ya que no presentaron ning&#250;n criterio de exclusi&#243;n para su an&#225;lisis por ML&#46; Nevus&#44; melanomas y carcinomas basocelulares fueron las lesiones m&#225;s frecuentes de nuestra base de datos&#46; Solo el 64&#44;7&#37; de los nevus y el 36&#44;6&#37; de los melanomas no ten&#237;an ning&#250;n criterio de exclusi&#243;n &#40;<a class="elsevierStyleCrossRef" href="#tbl0005">tabla 1</a>&#41;&#46; De los 528 melanomas&#44; 335 &#40;63&#44;4&#37;&#41; fueron excluidos&#46; La ausencia de piel circundante normal &#40;40&#44;5&#37; de todos los melanomas&#41; y la ausencia de pigmentaci&#243;n &#40;14&#44;2&#37;&#41; fueron las causas m&#225;s comunes de exclusi&#243;n&#46; Otros motivos de exclusi&#243;n se muestran en la <a class="elsevierStyleCrossRef" href="#tbl0005">tabla 1</a>&#46;</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Discusi&#243;n</span><p id="par0025" class="elsevierStylePara elsevierViewall">El melanoma representa la causa m&#225;s frecuente de muerte por neoplasias cut&#225;neas&#46; El diagn&#243;stico y el tratamiento precoz mejoran significativamente su pron&#243;stico&#46; Se requiere el desarrollo de un m&#233;todo de detecci&#243;n que sea eficaz&#46; La clasificaci&#243;n autom&#225;tica de im&#225;genes a partir del reconocimiento de patrones puede alcanzar una precisi&#243;n diagn&#243;stica similar a la de un dermat&#243;logo experto<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">6</span></a>&#46; Sin embargo&#44; existen algunas limitaciones que tendr&#225;n que ser superadas&#46; Entre ellas se destacan los criterios de exclusi&#243;n utilizados en la selecci&#243;n de las im&#225;genes de las neoplasias cut&#225;neas&#46; A pesar de que a partir de nuestra base de datos se seleccionaron &#250;nicamente im&#225;genes dermatosc&#243;picas de alta calidad&#44; solo el 34&#37; de ellas no ten&#237;a ning&#250;n criterio de exclusi&#243;n que permitiera su clasificaci&#243;n con los algoritmos de &#250;ltima generaci&#243;n de ML&#46; Este hecho disminuye considerablemente la utilidad diagn&#243;stica en la pr&#225;ctica cl&#237;nica diaria de algunos sistemas de ML&#46; Por otro lado&#44; las lesiones de gran tama&#241;o representan un problema importante para la utilizaci&#243;n de los algoritmos de ML&#44; ya que estas no se ajustan al di&#225;metro de la mayor&#237;a de las lentes dermatosc&#243;picas&#46; Esto afecta la clasificaci&#243;n mediante la mayor&#237;a de algoritmos de ML&#44; que requieren de la segmentaci&#243;n de la imagen para su an&#225;lisis<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">1</span></a>&#46; Por otro lado&#44; aunque en algunos trabajos se han propuesto m&#233;todos de detecci&#243;n&#47;eliminaci&#243;n del vello<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">5</span></a>&#44; el rendimiento de la mayor&#237;a de los sistemas de ML se ve perjudicado por su presencia&#46; Por &#250;ltimo&#44; cabe destacar que las bases de datos empleadas para el entrenamiento de los algoritmos actuales tienen poca representaci&#243;n de im&#225;genes de lesiones de piel volar&#44; lo que dificulta la correcta clasificaci&#243;n en estas localizaciones&#46; Afortunadamente se est&#225; avanzando r&#225;pidamente para superar estas limitaciones en la selecci&#243;n de im&#225;genes para la inteligencia artificial&#46; Como muestra de ello&#44; Yu et al&#46;<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">7</span></a> publicaron recientemente un trabajo en el que se utiliz&#243; el DCNN para la clasificaci&#243;n de melanoma acral y de nevus en piel volar&#46; En el presente trabajo se consideraron las limitaciones de la mayor&#237;a&#44; pero no de todos los sistemas de ML existentes en la actualidad&#46;</p><p id="par0030" class="elsevierStylePara elsevierViewall">Nuestro estudio muestra que los principales criterios de exclusi&#243;n de im&#225;genes de melanoma para clasificaci&#243;n mediante ML&#44; fueron la ausencia de piel normal circundante y la ausencia de pigmentaci&#243;n&#46; Gran parte de los melanomas se desarrollan sobre piel con da&#241;o act&#237;nico&#44; por lo que la piel circundante puede ser patol&#243;gica&#44; lo que dificulta su an&#225;lisis por la mayor&#237;a de los sistemas de ML actuales&#44; ya que el borde de la lesi&#243;n no est&#225; bien definido<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">5</span></a>&#46; Adem&#225;s&#44; el melanoma amelan&#243;tico&#44; que representa del 2&#37; al 8&#37; de todos los melanomas<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">8</span></a>&#44; a&#250;n no se puede diagnosticar correctamente por la mayor&#237;a de los sistemas actuales de ML&#46; Consideramos que todas estas limitaciones podr&#237;an resolverse a partir del dise&#241;o de algoritmos de ML que puedan trabajar con im&#225;genes incompletas&#44; incrementando el tama&#241;o de las bases de datos y seleccionando un mayor n&#250;mero de im&#225;genes de dermatoscopia que sean representativas de la pr&#225;ctica cl&#237;nica habitual&#46;</p><p id="par0035" class="elsevierStylePara elsevierViewall">En conclusi&#243;n&#44; consideramos que los sistemas de ML&#44; especialmente aquellos basados en el &#171;deep learning&#187;&#44; no solo convertir&#225;n el ML en una herramienta valiosa para el dermat&#243;logo&#44; sino tambi&#233;n para la poblaci&#243;n en general&#46; Sin embargo&#44; estos sistemas deber&#225;n superar algunas limitaciones que les permitir&#225;n ampliar el espectro de las im&#225;genes clasificables&#46; El avance en los &#250;ltimos a&#241;os ha sido r&#225;pido y evidente ya que&#44; incluso algunos de los criterios de exclusi&#243;n que hemos tenido en cuenta en este trabajo han sido recientemente resueltos por algoritmos presentados en el Simposio Internacional ISIC<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">3</span></a>&#46;</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Financiaci&#243;n</span><p id="par0040" class="elsevierStylePara elsevierViewall">Este estudio de la Unidad de Melanoma&#44; Hospital Cl&#237;nic&#44; Barcelona fue financiado en parte por subvenciones del Fondo de Investigaciones Sanitarias P&#46;I&#46; 12&#47;00840&#44; PI15&#47;00956 y PI15&#47;00716 Espa&#241;a&#59; por el CIBER de Enfermedades Raras del Instituto de Salud Carlos III&#44; Espa&#241;a&#44; cofinanciado por el Fondo Europeo de Desarrollo Regional &#40;FEDER&#41;&#46; Uni&#243;n Europea&#46; Una manera de hacer Europa&#59; por el AGAUR 2014&#95;SGR&#95;603 y 2017&#95;SGR&#95;1134 del Gobierno catal&#225;n&#44; Espa&#241;a&#59; por una beca de la &#171;Fundaci&#243; La Marat&#243; de TV3&#44; 201331-30&#187;&#44; Catalu&#241;a&#44; Espa&#241;a&#59; por la Comisi&#243;n Europea bajo el 6&#46;&#176; Programa Marco&#44; Contrato n&#46;&#176;&#58; LSHC-CT-2006-018702 &#40;GenoMEL&#41;&#59; por el programa CERCA&#47;Generalitat de Catalunya y por una beca de investigaci&#243;n de la Fundaci&#243;n Cient&#237;fica de la Asociaci&#243;n Espa&#241;ola Contra el C&#225;ncer GCB15152978SOEN&#44; Espa&#241;a&#46; Parte del trabajo se desarroll&#243; en el edificio Centro Esther Koplowitz&#44; Barcelona&#46;</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Conflicto de intereses</span><p id="par0045" class="elsevierStylePara elsevierViewall">Los autores declaran no tener ning&#250;n conflicto de intereses&#46;</p></span></span>"
    "textoCompletoSecciones" => array:1 [
      "secciones" => array:12 [
        0 => array:3 [
          "identificador" => "xres1388541"
          "titulo" => "Resumen"
          "secciones" => array:5 [
            0 => array:2 [
              "identificador" => "abst0005"
              "titulo" => "Antecedentes"
            ]
            1 => array:2 [
              "identificador" => "abst0010"
              "titulo" => "Objetivo"
            ]
            2 => array:2 [
              "identificador" => "abst0015"
              "titulo" => "M&#233;todos"
            ]
            3 => array:2 [
              "identificador" => "abst0020"
              "titulo" => "Resultados"
            ]
            4 => array:2 [
              "identificador" => "abst0025"
              "titulo" => "Discusi&#243;n"
            ]
          ]
        ]
        1 => array:2 [
          "identificador" => "xpalclavsec1274018"
          "titulo" => "Palabras clave"
        ]
        2 => array:3 [
          "identificador" => "xres1388540"
          "titulo" => "Abstract"
          "secciones" => array:5 [
            0 => array:2 [
              "identificador" => "abst0030"
              "titulo" => "Background"
            ]
            1 => array:2 [
              "identificador" => "abst0035"
              "titulo" => "Objective"
            ]
            2 => array:2 [
              "identificador" => "abst0040"
              "titulo" => "Methods"
            ]
            3 => array:2 [
              "identificador" => "abst0045"
              "titulo" => "Results"
            ]
            4 => array:2 [
              "identificador" => "abst0050"
              "titulo" => "Discussion"
            ]
          ]
        ]
        3 => array:2 [
          "identificador" => "xpalclavsec1274019"
          "titulo" => "Keywords"
        ]
        4 => array:2 [
          "identificador" => "sec0005"
          "titulo" => "Introducci&#243;n"
        ]
        5 => array:2 [
          "identificador" => "sec0010"
          "titulo" => "Materiales y m&#233;todos"
        ]
        6 => array:2 [
          "identificador" => "sec0015"
          "titulo" => "Resultados"
        ]
        7 => array:2 [
          "identificador" => "sec0020"
          "titulo" => "Discusi&#243;n"
        ]
        8 => array:2 [
          "identificador" => "sec0025"
          "titulo" => "Financiaci&#243;n"
        ]
        9 => array:2 [
          "identificador" => "sec0030"
          "titulo" => "Conflicto de intereses"
        ]
        10 => array:2 [
          "identificador" => "xack482845"
          "titulo" => "Agradecimientos"
        ]
        11 => array:1 [
          "titulo" => "Bibliograf&#237;a"
        ]
      ]
    ]
    "pdfFichero" => "main.pdf"
    "tienePdf" => true
    "fechaRecibido" => "2019-08-11"
    "fechaAceptado" => "2019-09-16"
    "PalabrasClave" => array:2 [
      "es" => array:1 [
        0 => array:4 [
          "clase" => "keyword"
          "titulo" => "Palabras clave"
          "identificador" => "xpalclavsec1274018"
          "palabras" => array:7 [
            0 => "Melanoma"
            1 => "C&#225;ncer de piel"
            2 => "Dermatoscopia"
            3 => "Clasificaci&#243;n de im&#225;genes"
            4 => "Aprendizaje autom&#225;tico"
            5 => "Inteligencia artificial"
            6 => "Redes neuronales convolucionales"
          ]
        ]
      ]
      "en" => array:1 [
        0 => array:4 [
          "clase" => "keyword"
          "titulo" => "Keywords"
          "identificador" => "xpalclavsec1274019"
          "palabras" => array:7 [
            0 => "Melanoma"
            1 => "Skin cancer"
            2 => "Dermoscopy"
            3 => "Image classification"
            4 => "Machine learning"
            5 => "Artificial Intelligence"
            6 => "Convolutional neural networks"
          ]
        ]
      ]
    ]
    "tieneResumen" => true
    "resumen" => array:2 [
      "es" => array:3 [
        "titulo" => "Resumen"
        "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Antecedentes</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">La clasificaci&#243;n autom&#225;tica de im&#225;genes es una rama prometedora del aprendizaje autom&#225;tico &#40;de sus siglas en ingl&#233;s Machine Learning &#91;ML&#93;&#41;&#44; y es una herramienta &#250;til en el diagn&#243;stico de c&#225;ncer de piel&#46; Sin embargo&#44; poco se ha estudiado acerca de las limitaciones de su uso en la pr&#225;ctica cl&#237;nica diaria&#46;</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Objetivo</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Determinar las limitaciones que existen en cuanto a la selecci&#243;n de im&#225;genes usadas para el an&#225;lisis por ML de las neoplasias cut&#225;neas&#44; en particular del melanoma&#46;</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">M&#233;todos</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Se dise&#241;&#243; un estudio de cohorte retrospectivo&#44; donde se incluyeron de forma consecutiva 2&#46;849 im&#225;genes dermatosc&#243;picas de alta calidad de tumores cut&#225;neos para su valoraci&#243;n por un sistema de ML&#44; recogidas entre los a&#241;os 2010 y 2014&#46; Cada imagen dermatosc&#243;pica fue clasificada seg&#250;n las caracter&#237;sticas de elegibilidad para el an&#225;lisis por ML&#46;</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Resultados</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">De las 2&#46;849 im&#225;genes elegidas a partir de nuestra base de datos&#44; 968 &#40;34&#37;&#41; cumplieron los criterios de inclusi&#243;n&#46; De los 528 melanomas&#44; 335 &#40;63&#44;4&#37;&#41; fueron excluidos&#46; La ausencia de piel normal circundante &#40;40&#44;5&#37; de todos los melanomas de nuestra base de datos&#41; y la ausencia de pigmentaci&#243;n &#40;14&#44;2&#37;&#41; fueron las causas m&#225;s frecuentes de exclusi&#243;n para el an&#225;lisis por ML&#46;</p></span> <span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Discusi&#243;n</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Solo el 36&#44;6&#37; de nuestros melanomas se consideraron aceptables para el an&#225;lisis por sistemas de ML de &#250;ltima generaci&#243;n&#46; Concluimos que los futuros sistemas de ML deber&#225;n ser entrenados a partir de bases de datos m&#225;s grandes que incluyan im&#225;genes representativas de la pr&#225;ctica cl&#237;nica habitual&#46; Afortunadamente&#44; muchas de estas limitaciones est&#225;n siendo superadas gracias a los avances realizados recientemente por la comunidad cient&#237;fica&#44; como se ha demostrado en trabajos recientes&#46;</p></span>"
        "secciones" => array:5 [
          0 => array:2 [
            "identificador" => "abst0005"
            "titulo" => "Antecedentes"
          ]
          1 => array:2 [
            "identificador" => "abst0010"
            "titulo" => "Objetivo"
          ]
          2 => array:2 [
            "identificador" => "abst0015"
            "titulo" => "M&#233;todos"
          ]
          3 => array:2 [
            "identificador" => "abst0020"
            "titulo" => "Resultados"
          ]
          4 => array:2 [
            "identificador" => "abst0025"
            "titulo" => "Discusi&#243;n"
          ]
        ]
      ]
      "en" => array:3 [
        "titulo" => "Abstract"
        "resumen" => "<span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Background</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Automated image classification is a promising branch of machine learning &#40;ML&#41; useful for skin cancer diagnosis&#44; but little has been determined about its limitations for general usability in current clinical practice&#46;</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Objective</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">To determine limitations in the selection of skin cancer images for ML analysis&#44; particularly in melanoma&#46;</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Methods</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Retrospective cohort study design&#44; including 2&#44;849 consecutive high-quality dermoscopy images of skin tumors from 2010 to 2014&#44; for evaluation by a ML system&#46; Each dermoscopy image was assorted according to its eligibility for ML analysis&#46;</p></span> <span id="abst0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Results</span><p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Of the 2&#44;849 images chosen from our database&#44; 968 &#40;34&#37;&#41; met the inclusion criteria for analysis by the ML system&#46; Only 64&#46;7&#37; of nevi and 36&#46;6&#37; of melanoma met the inclusion criteria&#46; Of the 528 melanomas&#44; 335 &#40;63&#46;4&#37;&#41; were excluded&#46; An absence of normal surrounding skin &#40;40&#46;5&#37; of all melanomas from our database&#41; and absence of pigmentation &#40;14&#46;2&#37;&#41; were the most common reasons for exclusion from ML analysis&#46;</p></span> <span id="abst0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Discussion</span><p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Only 36&#46;6&#37; of our melanomas were admissible for analysis by state-of-the-art ML systems&#46; We conclude that future ML systems should be trained on larger datasets which include relevant non-ideal images from lesions evaluated in real clinical practice&#46; Fortunately&#44; many of these limitations are being overcome by the scientific community as recent works show&#46;</p></span>"
        "secciones" => array:5 [
          0 => array:2 [
            "identificador" => "abst0030"
            "titulo" => "Background"
          ]
          1 => array:2 [
            "identificador" => "abst0035"
            "titulo" => "Objective"
          ]
          2 => array:2 [
            "identificador" => "abst0040"
            "titulo" => "Methods"
          ]
          3 => array:2 [
            "identificador" => "abst0045"
            "titulo" => "Results"
          ]
          4 => array:2 [
            "identificador" => "abst0050"
            "titulo" => "Discussion"
          ]
        ]
      ]
    ]
    "multimedia" => array:1 [
      0 => array:8 [
        "identificador" => "tbl0005"
        "etiqueta" => "Tabla 1"
        "tipo" => "MULTIMEDIATABLA"
        "mostrarFloat" => true
        "mostrarDisplay" => false
        "detalles" => array:1 [
          0 => array:3 [
            "identificador" => "at1"
            "detalle" => "Tabla "
            "rol" => "short"
          ]
        ]
        "tabla" => array:1 [
          "tablatextoimagen" => array:2 [
            0 => array:2 [
              "tabla" => array:1 [
                0 => """
                  <table border="0" frame="\n
                  \t\t\t\t\tvoid\n
                  \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t" scope="col" style="border-bottom: 2px solid black">&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " colspan="2" align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Presencia de alg&#250;n criterio potencial de exclusi&#243;n &#40;&#37; del total por localizaci&#243;n o diagn&#243;stico&#41;</th><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " colspan="2" align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Ausencia de alg&#250;n criterio potencial de exclusi&#243;n &#40;&#37; del total por localizaci&#243;n o diagn&#243;stico&#41;</th><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Total&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " colspan="6" align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Localizaci&#243;n</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Cabeza y cuello&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">633&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;76&#44;8&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">191&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;23&#44;2&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">824&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Extremidades superiores&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">159&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;62&#44;1&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">97&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;37&#44;9&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">256&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Extremidades inferiores&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">297&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;60&#44;4&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">195&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;39&#44;6&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">492&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Piel volar&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">62&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;100&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;0&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">62&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Tronco&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">538&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;53&#44;1&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">475&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;46&#44;9&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">1013&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Mucosas&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">15&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;83&#44;3&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">3&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;16&#44;7&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">18&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Otro&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">149&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;81&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">35&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;19&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">184&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " colspan="6" align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " colspan="6" align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Diagn&#243;stico</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Carcinoma basocelular&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">295&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;69&#44;6&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">129&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;30&#44;4&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">424&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Carcinoma epidermoide&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">59&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;89&#44;4&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">7&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;10&#44;6&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">66&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Cicatriz&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">21&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;77&#44;8&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">6&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;22&#44;2&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">27&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Dermatofibroma&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">17&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;77&#44;3&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">5&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;22&#44;7&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">22&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Lentigo&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">26&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;66&#44;7&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">13&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;33&#44;3&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">39&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " colspan="6" align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Melanoma&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">335&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;63&#44;4&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">193&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;36&#44;6&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">528&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Met&#225;stasis cut&#225;nea&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">9&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;100&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">0&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">9&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Nevus&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">256&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;35&#44;3&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">470&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;64&#44;7&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">726&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Queratosis act&#237;nica&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">137&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;78&#44;3&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">38&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;21&#44;7&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">175&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Queratosis seborreica&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">95&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;67&#44;9&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">45&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;32&#44;1&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">140&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Otros&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">225&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;82&#44;4&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">48&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">&#40;17&#44;6&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">273&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Diagn&#243;stico patol&#243;gico NA&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">-&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">-&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">-&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">-&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">420&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr></tbody></table>
                  """
              ]
              "imagenFichero" => array:1 [
                0 => "xTab2383777.png"
              ]
            ]
            1 => array:2 [
              "tabla" => array:1 [
                0 => """
                  <table border="0" frame="\n
                  \t\t\t\t\tvoid\n
                  \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " colspan="2" align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t" scope="col" style="border-bottom: 2px solid black">B&#46; Razones de exclusi&#243;n&#46;</th></tr><tr title="table-row"><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Melanoma&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th><th class="td" title="\n
                  \t\t\t\t\ttable-head\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t" scope="col" style="border-bottom: 2px solid black">N&#250;mero de excluidos &#40;&#37; del total de melanomas&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " colspan="2" align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">Razones de exclusi&#243;n</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ausencia de pigmentaci&#243;n&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">75 &#40;14&#44;2&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ausencia de piel circundante normal&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">214 &#40;40&#44;5&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Presencia de pelo&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">28 &#40;5&#44;3&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Met&#225;stasis&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">29 &#40;5&#44;5&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Localizaci&#243;n en piel volar&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">23 &#40;4&#44;4&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Lesi&#243;n ulcerada&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td><td class="td" title="\n
                  \t\t\t\t\ttable-entry\n
                  \t\t\t\t  " align="left" valign="\n
                  \t\t\t\t\ttop\n
                  \t\t\t\t">19 &#40;3&#44;6&#37;&#41;&nbsp;\t\t\t\t\t\t\n
                  \t\t\t\t</td></tr></tbody></table>
                  """
              ]
              "imagenFichero" => array:1 [
                0 => "xTab2383778.png"
              ]
            ]
          ]
        ]
        "descripcion" => array:1 [
          "es" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">A&#46; Im&#225;genes seleccionadas para el an&#225;lisis por ML&#46; Localizaci&#243;n y diagn&#243;stico</p>"
        ]
      ]
    ]
    "bibliografia" => array:2 [
      "titulo" => "Bibliograf&#237;a"
      "seccion" => array:1 [
        0 => array:2 [
          "identificador" => "bibs0015"
          "bibliografiaReferencia" => array:8 [
            0 => array:3 [
              "identificador" => "bib0045"
              "etiqueta" => "1"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Digital imaging biomarkers feed machine learning for melanoma screening"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "D&#46;S&#46; Gareau"
                            1 => "J&#46; Correa da Rosa"
                            2 => "S&#46; Yagerman"
                            3 => "J&#46;A&#46; Carucci"
                            4 => "N&#46; Gulati"
                            5 => "F&#46; Hueto"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:5 [
                        "tituloSerie" => "Exp Dermatol&#46;"
                        "fecha" => "2017"
                        "volumen" => "26"
                        "paginaInicial" => "615"
                        "paginaFinal" => "618"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            1 => array:3 [
              "identificador" => "bib0050"
              "etiqueta" => "2"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Deep-learning-based&#44; computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "Y&#46; Fujisawa"
                            1 => "Y&#46; Otomo"
                            2 => "Y&#46; Ogata"
                            3 => "Y&#46; Nakamura"
                            4 => "R&#46; Fujita"
                            5 => "Y&#46; Ishitsuka"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:1 [
                      "Revista" => array:2 [
                        "tituloSerie" => "Br J Dermatol&#46;"
                        "fecha" => "2018&#46;"
                      ]
                    ]
                  ]
                ]
              ]
            ]
            2 => array:3 [
              "identificador" => "bib0055"
              "etiqueta" => "3"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge&#58; Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "M&#46;A&#46; Marchetti"
                            1 => "N&#46;C&#46;F&#46; Codella"
                            2 => "S&#46;W&#46; Dusza"
                            3 => "D&#46;A&#46; Gutman"
                            4 => "B&#46; Helba"
                            5 => "A&#46; Kalloo"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1016/j.jaad.2017.08.016"
                      "Revista" => array:6 [
                        "tituloSerie" => "J Am Acad Dermatol&#46;"
                        "fecha" => "2018"
                        "volumen" => "78"
                        "paginaInicial" => "270"
                        "paginaFinal" => "277"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28969863"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            3 => array:3 [
              "identificador" => "bib0060"
              "etiqueta" => "4"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "The HAM10000 dataset&#44; a large collection of multi-source dermatoscopic images of common pigmented skin lesions"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => false
                          "autores" => array:3 [
                            0 => "P&#46; Tschandl"
                            1 => "C&#46; Rosendahl"
                            2 => "H&#46; Kittler"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1038/sdata.2018.161"
                      "Revista" => array:5 [
                        "tituloSerie" => "Sci Data&#46;"
                        "fecha" => "2018"
                        "volumen" => "5"
                        "paginaInicial" => "180161"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30106392"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            4 => array:3 [
              "identificador" => "bib0065"
              "etiqueta" => "5"
              "referencia" => array:1 [
                0 => array:1 [
                  "referenciaCompleta" => "Celebi M&#44; Wen Q&#44; Iyatomi H&#44; Shimizu K&#44; Zhou H&#44; Schaefer G&#46; A state-of-the-art survey on lesion border detection in dermoscopy images&#46; In&#58; Celebi ME&#44; Mendonca T&#44; Marques J&#44; eds&#46; Dermoscopy image analysis&#46; Boca Raton&#44; FL&#58; CRC Press&#59; 2015&#46;"
                ]
              ]
            ]
            5 => array:3 [
              "identificador" => "bib0070"
              "etiqueta" => "6"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Dermatologist-level classification of skin cancer with deep neural networks"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "A&#46; Esteva"
                            1 => "B&#46; Kuprel"
                            2 => "R&#46;A&#46; Novoa"
                            3 => "J&#46; Ko"
                            4 => "S&#46;M&#46; Swetter"
                            5 => "H&#46;M&#46; Blau"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1038/nature21056"
                      "Revista" => array:6 [
                        "tituloSerie" => "Nature&#46;"
                        "fecha" => "2017"
                        "volumen" => "542"
                        "paginaInicial" => "115"
                        "paginaFinal" => "118"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28117445"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            6 => array:3 [
              "identificador" => "bib0075"
              "etiqueta" => "7"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Acral melanoma detection using a convolutional neural network for dermoscopy images"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "C&#46; Yu"
                            1 => "S&#46; Yang"
                            2 => "W&#46; Kim"
                            3 => "J&#46; Jung"
                            4 => "K&#46;Y&#46; Chung"
                            5 => "S&#46;W&#46; Lee"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1371/journal.pone.0193321"
                      "Revista" => array:5 [
                        "tituloSerie" => "PLoS One&#46;"
                        "fecha" => "2018"
                        "volumen" => "13"
                        "paginaInicial" => "e0193321"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29513718"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
            7 => array:3 [
              "identificador" => "bib0080"
              "etiqueta" => "8"
              "referencia" => array:1 [
                0 => array:2 [
                  "contribucion" => array:1 [
                    0 => array:2 [
                      "titulo" => "Dermoscopic diagnosis of amelanotic&#47;hypomelanotic melanoma"
                      "autores" => array:1 [
                        0 => array:2 [
                          "etal" => true
                          "autores" => array:6 [
                            0 => "M&#46;A&#46; Pizzichetta"
                            1 => "H&#46; Kittler"
                            2 => "I&#46; Stanganelli"
                            3 => "G&#46; Ghigliotti"
                            4 => "M&#46;T&#46; Corradin"
                            5 => "P&#46; Rubegni"
                          ]
                        ]
                      ]
                    ]
                  ]
                  "host" => array:1 [
                    0 => array:2 [
                      "doi" => "10.1111/bjd.15093"
                      "Revista" => array:6 [
                        "tituloSerie" => "Br J Dermatol&#46;"
                        "fecha" => "2017"
                        "volumen" => "177"
                        "paginaInicial" => "538"
                        "paginaFinal" => "540"
                        "link" => array:1 [
                          0 => array:2 [
                            "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27681347"
                            "web" => "Medline"
                          ]
                        ]
                      ]
                    ]
                  ]
                ]
              ]
            ]
          ]
        ]
      ]
    ]
    "agradecimientos" => array:1 [
      0 => array:4 [
        "identificador" => "xack482845"
        "titulo" => "Agradecimientos"
        "texto" => "<p id="par0050" class="elsevierStylePara elsevierViewall">Gracias a nuestros pacientes y a sus familias&#44; que son la raz&#243;n principal de nuestros estudios&#59; a las enfermeras de la Unidad de Melanoma del Hospital Cl&#237;nic de Barcelona&#44; Daniel Gabriel&#44; Pablo Iglesias y Mar&#237;a E&#46; Moliner por ayudar a recopilar datos de pacientes y a Paul Hetherington por ayudar con la edici&#243;n y la correcci&#243;n al ingl&#233;s del manuscrito&#46;</p>"
        "vista" => "all"
      ]
    ]
  ]
  "idiomaDefecto" => "es"
  "url" => "/00017310/0000011100000004/v3_202009220625/S0001731020300041/v3_202009220625/es/main.assets"
  "Apartado" => array:4 [
    "identificador" => "6163"
    "tipo" => "SECCION"
    "es" => array:2 [
      "titulo" => "Originales"
      "idiomaDefecto" => true
    ]
    "idiomaDefecto" => "es"
  ]
  "PDF" => "https://static.elsevier.es/multimedia/00017310/0000011100000004/v3_202009220625/S0001731020300041/v3_202009220625/es/main.pdf?idApp=UINPBA000044&text.app=https://actasdermo.org/"
  "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020300041?idApp=UINPBA000044"
]
Share
Journal Information
Vol. 111. Issue 4.
Pages 313-316 (May 2020)
Visits
6339
Vol. 111. Issue 4.
Pages 313-316 (May 2020)
ORIGINAL
Open Access
Uso del aprendizaje automático en el diagnóstico del melanoma. Limitaciones por superar
Machine Learning in Melanoma Diagnosis. Limitations About to be Overcome
Visits
6339
C. González-Cruza, M.A. Jofrea, S. Podlipnika,b, M. Combaliaa, D. Gareaud, M. Gamboaa, M.G. Vallonea, Z. Faride Barragán-Estudilloa, A.L. Tamez-Peñaa, J. Montoyaa, M. América Jesús-Silvaa, C. Carreraa,b,c, J. Malvehya,b,c, S. Puiga,b,c,
Corresponding author
susipuig@gmail.com
susipuig@gmail.com

Autor para correspondencia.
a Servicio de Dermatología, Hospital Clínic de Barcelona, Barcelona, España
b Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, España
c CIBER en Enfermedades raras, Instituto de Salud Carlos III, Barcelona, España
d Laboratory of Investigative Dermatology, The Rockefeller University, Nueva York, EE. UU.
This item has received

Under a Creative Commons license
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Tables (1)
Tabla 1. A. Imágenes seleccionadas para el análisis por ML. Localización y diagnóstico
Resumen
Antecedentes

La clasificación automática de imágenes es una rama prometedora del aprendizaje automático (de sus siglas en inglés Machine Learning [ML]), y es una herramienta útil en el diagnóstico de cáncer de piel. Sin embargo, poco se ha estudiado acerca de las limitaciones de su uso en la práctica clínica diaria.

Objetivo

Determinar las limitaciones que existen en cuanto a la selección de imágenes usadas para el análisis por ML de las neoplasias cutáneas, en particular del melanoma.

Métodos

Se diseñó un estudio de cohorte retrospectivo, donde se incluyeron de forma consecutiva 2.849 imágenes dermatoscópicas de alta calidad de tumores cutáneos para su valoración por un sistema de ML, recogidas entre los años 2010 y 2014. Cada imagen dermatoscópica fue clasificada según las características de elegibilidad para el análisis por ML.

Resultados

De las 2.849 imágenes elegidas a partir de nuestra base de datos, 968 (34%) cumplieron los criterios de inclusión. De los 528 melanomas, 335 (63,4%) fueron excluidos. La ausencia de piel normal circundante (40,5% de todos los melanomas de nuestra base de datos) y la ausencia de pigmentación (14,2%) fueron las causas más frecuentes de exclusión para el análisis por ML.

Discusión

Solo el 36,6% de nuestros melanomas se consideraron aceptables para el análisis por sistemas de ML de última generación. Concluimos que los futuros sistemas de ML deberán ser entrenados a partir de bases de datos más grandes que incluyan imágenes representativas de la práctica clínica habitual. Afortunadamente, muchas de estas limitaciones están siendo superadas gracias a los avances realizados recientemente por la comunidad científica, como se ha demostrado en trabajos recientes.

Palabras clave:
Melanoma
Cáncer de piel
Dermatoscopia
Clasificación de imágenes
Aprendizaje automático
Inteligencia artificial
Redes neuronales convolucionales
Abstract
Background

Automated image classification is a promising branch of machine learning (ML) useful for skin cancer diagnosis, but little has been determined about its limitations for general usability in current clinical practice.

Objective

To determine limitations in the selection of skin cancer images for ML analysis, particularly in melanoma.

Methods

Retrospective cohort study design, including 2,849 consecutive high-quality dermoscopy images of skin tumors from 2010 to 2014, for evaluation by a ML system. Each dermoscopy image was assorted according to its eligibility for ML analysis.

Results

Of the 2,849 images chosen from our database, 968 (34%) met the inclusion criteria for analysis by the ML system. Only 64.7% of nevi and 36.6% of melanoma met the inclusion criteria. Of the 528 melanomas, 335 (63.4%) were excluded. An absence of normal surrounding skin (40.5% of all melanomas from our database) and absence of pigmentation (14.2%) were the most common reasons for exclusion from ML analysis.

Discussion

Only 36.6% of our melanomas were admissible for analysis by state-of-the-art ML systems. We conclude that future ML systems should be trained on larger datasets which include relevant non-ideal images from lesions evaluated in real clinical practice. Fortunately, many of these limitations are being overcome by the scientific community as recent works show.

Keywords:
Melanoma
Skin cancer
Dermoscopy
Image classification
Machine learning
Artificial Intelligence
Convolutional neural networks
Full Text
Introducción

La clasificación automatizada de imágenes por reconocimiento de patrones es una rama del aprendizaje automático (del inglés «Machine Learning» [ML]) que ofrece al dermatólogo una herramienta útil para diagnóstico de cáncer de piel1. Las redes neuronales convolucionales profundas (del inglés «Deep convolutional neural networks» [DCNN]) han mejorado de manera extraordinaria la precisión en el aprendizaje de patrones y la clasificación de objetos2, son utilizadas de manera satisfactoria en la clasificación de imágenes dermatoscópicas de lesiones cutáneas3. Sin embargo, la selección de imágenes mediante ML presenta en la actualidad ciertas restricciones que evitan su uso generalizado. En el presente estudio se evalúan algunos de los criterios de exclusión para la selección de imágenes de neoplasias cutáneas (con especial énfasis en el melanoma) por ML, mencionados en trabajos recientes1,4,5.

Materiales y métodos

Este estudio se realizó en un hospital universitario de tercer nivel especializado en cáncer cutáneo, localizado en Barcelona, España. Se diseñó un estudio de cohorte retrospectivo donde se incluyeron de manera consecutiva 2.849 imágenes dermatoscópicas de alta calidad de tumores cutáneos, obtenidas a partir de la base de datos de la Unidad de Melanoma, recogidas entre el 2010 y 2014. Se utilizó el sistema de microscopia de epiluminiscencia fotográfica digital DermLite® 3Gen con una conexión de rosca de 37mm y una cámara Canon modelo G16. Se contó con el diagnóstico histológico en 2.429 de las imágenes. Finalmente, las imágenes se clasificaron según si cumplían o no los criterios de exclusión para el análisis por ML, según los mencionados en la bibliografía1,4,5: dificultad en la detección del borde de la lesión (ausencia de pigmentación, ausencia de piel normal circundante, presencia de pelo, ubicación en piel volar), metástasis cutánea o lesión ulcerada.

Este estudio fue aprobado por el comité de ética de nuestro centro. Todos los procedimientos con participantes humanos se realizaron de acuerdo con los estándares éticos del comité de investigación institucional y con la declaración de Helsinki de 1964 y sus enmiendas posteriores o estándares éticos comparables.

Resultados

De las 2.849 imágenes obtenidas a partir de nuestra base de datos, 968 (34%) se consideraron elegibles ya que no presentaron ningún criterio de exclusión para su análisis por ML. Nevus, melanomas y carcinomas basocelulares fueron las lesiones más frecuentes de nuestra base de datos. Solo el 64,7% de los nevus y el 36,6% de los melanomas no tenían ningún criterio de exclusión (tabla 1). De los 528 melanomas, 335 (63,4%) fueron excluidos. La ausencia de piel circundante normal (40,5% de todos los melanomas) y la ausencia de pigmentación (14,2%) fueron las causas más comunes de exclusión. Otros motivos de exclusión se muestran en la tabla 1.

Tabla 1.

A. Imágenes seleccionadas para el análisis por ML. Localización y diagnóstico

  Presencia de algún criterio potencial de exclusión (% del total por localización o diagnóstico)Ausencia de algún criterio potencial de exclusión (% del total por localización o diagnóstico)Total 
Localización
Cabeza y cuello  633  (76,8%)  191  (23,2%)  824 
Extremidades superiores  159  (62,1%)  97  (37,9%)  256 
Extremidades inferiores  297  (60,4%)  195  (39,6%)  492 
Piel volar  62  (100%)  (0%)  62 
Tronco  538  (53,1%)  475  (46,9%)  1013 
Mucosas  15  (83,3%)  (16,7%)  18 
Otro  149  (81%)  35  (19%)  184 
Diagnóstico
Carcinoma basocelular  295  (69,6%)  129  (30,4%)  424 
Carcinoma epidermoide  59  (89,4%)  (10,6%)  66 
Cicatriz  21  (77,8%)  (22,2%)  27 
Dermatofibroma  17  (77,3%)  (22,7%)  22 
Lentigo  26  (66,7%)  13  (33,3%)  39 
Melanoma  335  (63,4%)  193  (36,6%)  528 
Metástasis cutánea  (100%) 
Nevus  256  (35,3%)  470  (64,7%)  726 
Queratosis actínica  137  (78,3%)  38  (21,7%)  175 
Queratosis seborreica  95  (67,9%)  45  (32,1%)  140 
Otros  225  (82,4%)  48  (17,6%)  273 
Diagnóstico patológico NA  420 
B. Razones de exclusión.
Melanoma  Número de excluidos (% del total de melanomas) 
Razones de exclusión
Ausencia de pigmentación  75 (14,2%) 
Ausencia de piel circundante normal  214 (40,5%) 
Presencia de pelo  28 (5,3%) 
Metástasis  29 (5,5%) 
Localización en piel volar  23 (4,4%) 
Lesión ulcerada  19 (3,6%) 
Discusión

El melanoma representa la causa más frecuente de muerte por neoplasias cutáneas. El diagnóstico y el tratamiento precoz mejoran significativamente su pronóstico. Se requiere el desarrollo de un método de detección que sea eficaz. La clasificación automática de imágenes a partir del reconocimiento de patrones puede alcanzar una precisión diagnóstica similar a la de un dermatólogo experto6. Sin embargo, existen algunas limitaciones que tendrán que ser superadas. Entre ellas se destacan los criterios de exclusión utilizados en la selección de las imágenes de las neoplasias cutáneas. A pesar de que a partir de nuestra base de datos se seleccionaron únicamente imágenes dermatoscópicas de alta calidad, solo el 34% de ellas no tenía ningún criterio de exclusión que permitiera su clasificación con los algoritmos de última generación de ML. Este hecho disminuye considerablemente la utilidad diagnóstica en la práctica clínica diaria de algunos sistemas de ML. Por otro lado, las lesiones de gran tamaño representan un problema importante para la utilización de los algoritmos de ML, ya que estas no se ajustan al diámetro de la mayoría de las lentes dermatoscópicas. Esto afecta la clasificación mediante la mayoría de algoritmos de ML, que requieren de la segmentación de la imagen para su análisis1. Por otro lado, aunque en algunos trabajos se han propuesto métodos de detección/eliminación del vello5, el rendimiento de la mayoría de los sistemas de ML se ve perjudicado por su presencia. Por último, cabe destacar que las bases de datos empleadas para el entrenamiento de los algoritmos actuales tienen poca representación de imágenes de lesiones de piel volar, lo que dificulta la correcta clasificación en estas localizaciones. Afortunadamente se está avanzando rápidamente para superar estas limitaciones en la selección de imágenes para la inteligencia artificial. Como muestra de ello, Yu et al.7 publicaron recientemente un trabajo en el que se utilizó el DCNN para la clasificación de melanoma acral y de nevus en piel volar. En el presente trabajo se consideraron las limitaciones de la mayoría, pero no de todos los sistemas de ML existentes en la actualidad.

Nuestro estudio muestra que los principales criterios de exclusión de imágenes de melanoma para clasificación mediante ML, fueron la ausencia de piel normal circundante y la ausencia de pigmentación. Gran parte de los melanomas se desarrollan sobre piel con daño actínico, por lo que la piel circundante puede ser patológica, lo que dificulta su análisis por la mayoría de los sistemas de ML actuales, ya que el borde de la lesión no está bien definido5. Además, el melanoma amelanótico, que representa del 2% al 8% de todos los melanomas8, aún no se puede diagnosticar correctamente por la mayoría de los sistemas actuales de ML. Consideramos que todas estas limitaciones podrían resolverse a partir del diseño de algoritmos de ML que puedan trabajar con imágenes incompletas, incrementando el tamaño de las bases de datos y seleccionando un mayor número de imágenes de dermatoscopia que sean representativas de la práctica clínica habitual.

En conclusión, consideramos que los sistemas de ML, especialmente aquellos basados en el «deep learning», no solo convertirán el ML en una herramienta valiosa para el dermatólogo, sino también para la población en general. Sin embargo, estos sistemas deberán superar algunas limitaciones que les permitirán ampliar el espectro de las imágenes clasificables. El avance en los últimos años ha sido rápido y evidente ya que, incluso algunos de los criterios de exclusión que hemos tenido en cuenta en este trabajo han sido recientemente resueltos por algoritmos presentados en el Simposio Internacional ISIC3.

Financiación

Este estudio de la Unidad de Melanoma, Hospital Clínic, Barcelona fue financiado en parte por subvenciones del Fondo de Investigaciones Sanitarias P.I. 12/00840, PI15/00956 y PI15/00716 España; por el CIBER de Enfermedades Raras del Instituto de Salud Carlos III, España, cofinanciado por el Fondo Europeo de Desarrollo Regional (FEDER). Unión Europea. Una manera de hacer Europa; por el AGAUR 2014_SGR_603 y 2017_SGR_1134 del Gobierno catalán, España; por una beca de la «Fundació La Marató de TV3, 201331-30», Cataluña, España; por la Comisión Europea bajo el 6.° Programa Marco, Contrato n.°: LSHC-CT-2006-018702 (GenoMEL); por el programa CERCA/Generalitat de Catalunya y por una beca de investigación de la Fundación Científica de la Asociación Española Contra el Cáncer GCB15152978SOEN, España. Parte del trabajo se desarrolló en el edificio Centro Esther Koplowitz, Barcelona.

Conflicto de intereses

Los autores declaran no tener ningún conflicto de intereses.

Agradecimientos

Gracias a nuestros pacientes y a sus familias, que son la razón principal de nuestros estudios; a las enfermeras de la Unidad de Melanoma del Hospital Clínic de Barcelona, Daniel Gabriel, Pablo Iglesias y María E. Moliner por ayudar a recopilar datos de pacientes y a Paul Hetherington por ayudar con la edición y la corrección al inglés del manuscrito.

Bibliografía
[1]
D.S. Gareau, J. Correa da Rosa, S. Yagerman, J.A. Carucci, N. Gulati, F. Hueto, et al.
Digital imaging biomarkers feed machine learning for melanoma screening.
Exp Dermatol., 26 (2017), pp. 615-618
[2]
Y. Fujisawa, Y. Otomo, Y. Ogata, Y. Nakamura, R. Fujita, Y. Ishitsuka, et al.
Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis.
Br J Dermatol., (2018.),
[3]
M.A. Marchetti, N.C.F. Codella, S.W. Dusza, D.A. Gutman, B. Helba, A. Kalloo, et al.
Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images.
J Am Acad Dermatol., 78 (2018), pp. 270-277
[4]
P. Tschandl, C. Rosendahl, H. Kittler.
The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions.
Sci Data., 5 (2018), pp. 180161
[5]
Celebi M, Wen Q, Iyatomi H, Shimizu K, Zhou H, Schaefer G. A state-of-the-art survey on lesion border detection in dermoscopy images. In: Celebi ME, Mendonca T, Marques J, eds. Dermoscopy image analysis. Boca Raton, FL: CRC Press; 2015.
[6]
A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, et al.
Dermatologist-level classification of skin cancer with deep neural networks.
Nature., 542 (2017), pp. 115-118
[7]
C. Yu, S. Yang, W. Kim, J. Jung, K.Y. Chung, S.W. Lee, et al.
Acral melanoma detection using a convolutional neural network for dermoscopy images.
PLoS One., 13 (2018), pp. e0193321
[8]
M.A. Pizzichetta, H. Kittler, I. Stanganelli, G. Ghigliotti, M.T. Corradin, P. Rubegni, et al.
Dermoscopic diagnosis of amelanotic/hypomelanotic melanoma.
Br J Dermatol., 177 (2017), pp. 538-540
Copyright © 2020. AEDV
Download PDF
Idiomas
Actas Dermo-Sifiliográficas
Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?