was read the article
array:25 [ "pii" => "S0001731020300041" "issn" => "00017310" "doi" => "10.1016/j.ad.2019.09.002" "estado" => "S300" "fechaPublicacion" => "2020-05-01" "aid" => "2295" "copyright" => "AEDV" "copyrightAnyo" => "2020" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Actas Dermosifiliogr. 2020;111:313-6" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "en" => array:20 [ "pii" => "S1578219020300846" "issn" => "15782190" "doi" => "10.1016/j.adengl.2019.09.003" "estado" => "S300" "fechaPublicacion" => "2020-05-01" "aid" => "2295" "copyright" => "AEDV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Actas Dermosifiliogr. 2020;111:313-6" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Machine Learning in Melanoma Diagnosis. Limitations About to be Overcome" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "313" "paginaFinal" => "316" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Uso del aprendizaje automático en el diagnóstico del melanoma. Limitaciones por superar" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "C. González-Cruz, M.A. Jofre, S. Podlipnik, M. Combalia, D. Gareau, M. Gamboa, M.G. Vallone, Z. Faride Barragán-Estudillo, A.L. Tamez-Peña, J. Montoya, M. América Jesús-Silva, C. Carrera, J. Malvehy, S. Puig" "autores" => array:14 [ 0 => array:2 [ "nombre" => "C." "apellidos" => "González-Cruz" ] 1 => array:2 [ "nombre" => "M.A." "apellidos" => "Jofre" ] 2 => array:2 [ "nombre" => "S." "apellidos" => "Podlipnik" ] 3 => array:2 [ "nombre" => "M." "apellidos" => "Combalia" ] 4 => array:2 [ "nombre" => "D." "apellidos" => "Gareau" ] 5 => array:2 [ "nombre" => "M." "apellidos" => "Gamboa" ] 6 => array:2 [ "nombre" => "M.G." "apellidos" => "Vallone" ] 7 => array:2 [ "nombre" => "Z." "apellidos" => "Faride Barragán-Estudillo" ] 8 => array:2 [ "nombre" => "A.L." "apellidos" => "Tamez-Peña" ] 9 => array:2 [ "nombre" => "J." "apellidos" => "Montoya" ] 10 => array:2 [ "nombre" => "M." "apellidos" => "América Jesús-Silva" ] 11 => array:2 [ "nombre" => "C." "apellidos" => "Carrera" ] 12 => array:2 [ "nombre" => "J." "apellidos" => "Malvehy" ] 13 => array:2 [ "nombre" => "S." "apellidos" => "Puig" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0001731020300041" "doi" => "10.1016/j.ad.2019.09.002" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020300041?idApp=UINPBA000044" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219020300846?idApp=UINPBA000044" "url" => "/15782190/0000011100000004/v1_202006060751/S1578219020300846/v1_202006060751/en/main.assets" ] ] "itemSiguiente" => array:20 [ "pii" => "S0001731020300089" "issn" => "00017310" "doi" => "10.1016/j.ad.2018.09.026" "estado" => "S300" "fechaPublicacion" => "2020-05-01" "aid" => "2299" "copyright" => "AEDV" "documento" => "simple-article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "crp" "cita" => "Actas Dermosifiliogr. 2020;111:317-8" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "es" => array:11 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Dermatoscopia práctica</span>" "titulo" => "Lesiones anaranjadas de aparición progresiva en cuero cabelludo" "tienePdf" => "es" "tieneTextoCompleto" => "es" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "317" "paginaFinal" => "318" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Progressive Orange Lesions on the Scalp" ] ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figura 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 877 "Ancho" => 2175 "Tamanyo" => 182215 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">En la dermatoscopia de 2 lesiones encontramos un fondo anaranjado sin estructuras y vascularización irregular de disposición centrípeta (A, B), con una zona erosionada en una de ellas (A).</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "V.A. González-Delgado, P. Cordero-Romero, J.M. Martín" "autores" => array:3 [ 0 => array:2 [ "nombre" => "V.A." "apellidos" => "González-Delgado" ] 1 => array:2 [ "nombre" => "P." "apellidos" => "Cordero-Romero" ] 2 => array:2 [ "nombre" => "J.M." "apellidos" => "Martín" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S1578219020300810" "doi" => "10.1016/j.adengl.2018.09.024" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219020300810?idApp=UINPBA000044" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020300089?idApp=UINPBA000044" "url" => "/00017310/0000011100000004/v3_202009220625/S0001731020300089/v3_202009220625/es/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S0001731020300053" "issn" => "00017310" "doi" => "10.1016/j.ad.2019.09.003" "estado" => "S300" "fechaPublicacion" => "2020-05-01" "aid" => "2296" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Actas Dermosifiliogr. 2020;111:306-12" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "es" => array:14 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">ORIGINAL</span>" "titulo" => "Enfermedad de Paget extramamaria" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:3 [ 0 => "es" 1 => "es" 2 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "306" "paginaFinal" => "312" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Extramammary Paget Disease" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 1 "multimedia" => array:5 [ "identificador" => "fig0015" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx1.jpeg" "Alto" => 947 "Ancho" => 1333 "Tamanyo" => 169641 ] ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "J. Marcoval, R.M. Penín, A. Vidal, J. Bermejo" "autores" => array:4 [ 0 => array:2 [ "nombre" => "J." "apellidos" => "Marcoval" ] 1 => array:2 [ "nombre" => "R.M." "apellidos" => "Penín" ] 2 => array:2 [ "nombre" => "A." "apellidos" => "Vidal" ] 3 => array:2 [ "nombre" => "J." "apellidos" => "Bermejo" ] ] ] ] "resumen" => array:1 [ 0 => array:3 [ "titulo" => "Graphical abstract" "clase" => "graphical" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall"><elsevierMultimedia ident="fig0015"></elsevierMultimedia></p></span>" ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S1578219020301037" "doi" => "10.1016/j.adengl.2019.09.004" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219020301037?idApp=UINPBA000044" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020300053?idApp=UINPBA000044" "url" => "/00017310/0000011100000004/v3_202009220625/S0001731020300053/v3_202009220625/es/main.assets" ] "es" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">ORIGINAL</span>" "titulo" => "Uso del aprendizaje automático en el diagnóstico del melanoma. Limitaciones por superar" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "313" "paginaFinal" => "316" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "C. González-Cruz, M.A. Jofre, S. Podlipnik, M. Combalia, D. Gareau, M. Gamboa, M.G. Vallone, Z. Faride Barragán-Estudillo, A.L. Tamez-Peña, J. Montoya, M. América Jesús-Silva, C. Carrera, J. Malvehy, S. Puig" "autores" => array:14 [ 0 => array:3 [ "nombre" => "C." "apellidos" => "González-Cruz" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "M.A." "apellidos" => "Jofre" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "S." "apellidos" => "Podlipnik" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:3 [ "nombre" => "M." "apellidos" => "Combalia" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 4 => array:3 [ "nombre" => "D." "apellidos" => "Gareau" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 5 => array:3 [ "nombre" => "M." "apellidos" => "Gamboa" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 6 => array:3 [ "nombre" => "M.G." "apellidos" => "Vallone" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 7 => array:3 [ "nombre" => "Z." "apellidos" => "Faride Barragán-Estudillo" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 8 => array:3 [ "nombre" => "A.L." "apellidos" => "Tamez-Peña" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 9 => array:3 [ "nombre" => "J." "apellidos" => "Montoya" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 10 => array:3 [ "nombre" => "M." "apellidos" => "América Jesús-Silva" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 11 => array:3 [ "nombre" => "C." "apellidos" => "Carrera" "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 12 => array:3 [ "nombre" => "J." "apellidos" => "Malvehy" "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 13 => array:4 [ "nombre" => "S." "apellidos" => "Puig" "email" => array:2 [ 0 => "susipuig@gmail.com" 1 => "susipuig@gmail.com" ] "referencia" => array:4 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] 3 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:4 [ 0 => array:3 [ "entidad" => "Servicio de Dermatología, Hospital Clínic de Barcelona, Barcelona, España" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, España" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "CIBER en Enfermedades raras, Instituto de Salud Carlos III, Barcelona, España" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Laboratory of Investigative Dermatology, The Rockefeller University, Nueva York, EE. UU." "etiqueta" => "d" "identificador" => "aff0020" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Autor para correspondencia." ] ] ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Machine Learning in Melanoma Diagnosis. Limitations About to be Overcome" ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Introducción</span><p id="par0005" class="elsevierStylePara elsevierViewall">La clasificación automatizada de imágenes por reconocimiento de patrones es una rama del aprendizaje automático (del inglés «Machine Learning» [ML]) que ofrece al dermatólogo una herramienta útil para diagnóstico de cáncer de piel<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">1</span></a>. Las redes neuronales convolucionales profundas (del inglés «Deep convolutional neural networks» [DCNN]) han mejorado de manera extraordinaria la precisión en el aprendizaje de patrones y la clasificación de objetos<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">2</span></a>, son utilizadas de manera satisfactoria en la clasificación de imágenes dermatoscópicas de lesiones cutáneas<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">3</span></a>. Sin embargo, la selección de imágenes mediante ML presenta en la actualidad ciertas restricciones que evitan su uso generalizado. En el presente estudio se evalúan algunos de los criterios de exclusión para la selección de imágenes de neoplasias cutáneas (con especial énfasis en el melanoma) por ML, mencionados en trabajos recientes<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">1,4,5</span></a>.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Materiales y métodos</span><p id="par0010" class="elsevierStylePara elsevierViewall">Este estudio se realizó en un hospital universitario de tercer nivel especializado en cáncer cutáneo, localizado en Barcelona, España. Se diseñó un estudio de cohorte retrospectivo donde se incluyeron de manera consecutiva 2.849 imágenes dermatoscópicas de alta calidad de tumores cutáneos, obtenidas a partir de la base de datos de la Unidad de Melanoma, recogidas entre el 2010 y 2014. Se utilizó el sistema de microscopia de epiluminiscencia fotográfica digital DermLite® 3<span class="elsevierStyleHsp" style=""></span>Gen con una conexión de rosca de 37<span class="elsevierStyleHsp" style=""></span>mm y una cámara Canon modelo G16. Se contó con el diagnóstico histológico en 2.429 de las imágenes. Finalmente, las imágenes se clasificaron según si cumplían o no los criterios de exclusión para el análisis por ML, según los mencionados en la bibliografía<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">1,4,5</span></a>: dificultad en la detección del borde de la lesión (ausencia de pigmentación, ausencia de piel normal circundante, presencia de pelo, ubicación en piel volar), metástasis cutánea o lesión ulcerada.</p><p id="par0015" class="elsevierStylePara elsevierViewall">Este estudio fue aprobado por el comité de ética de nuestro centro. Todos los procedimientos con participantes humanos se realizaron de acuerdo con los estándares éticos del comité de investigación institucional y con la declaración de Helsinki de 1964 y sus enmiendas posteriores o estándares éticos comparables.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Resultados</span><p id="par0020" class="elsevierStylePara elsevierViewall">De las 2.849 imágenes obtenidas a partir de nuestra base de datos, 968 (34%) se consideraron elegibles ya que no presentaron ningún criterio de exclusión para su análisis por ML. Nevus, melanomas y carcinomas basocelulares fueron las lesiones más frecuentes de nuestra base de datos. Solo el 64,7% de los nevus y el 36,6% de los melanomas no tenían ningún criterio de exclusión (<a class="elsevierStyleCrossRef" href="#tbl0005">tabla 1</a>). De los 528 melanomas, 335 (63,4%) fueron excluidos. La ausencia de piel circundante normal (40,5% de todos los melanomas) y la ausencia de pigmentación (14,2%) fueron las causas más comunes de exclusión. Otros motivos de exclusión se muestran en la <a class="elsevierStyleCrossRef" href="#tbl0005">tabla 1</a>.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Discusión</span><p id="par0025" class="elsevierStylePara elsevierViewall">El melanoma representa la causa más frecuente de muerte por neoplasias cutáneas. El diagnóstico y el tratamiento precoz mejoran significativamente su pronóstico. Se requiere el desarrollo de un método de detección que sea eficaz. La clasificación automática de imágenes a partir del reconocimiento de patrones puede alcanzar una precisión diagnóstica similar a la de un dermatólogo experto<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">6</span></a>. Sin embargo, existen algunas limitaciones que tendrán que ser superadas. Entre ellas se destacan los criterios de exclusión utilizados en la selección de las imágenes de las neoplasias cutáneas. A pesar de que a partir de nuestra base de datos se seleccionaron únicamente imágenes dermatoscópicas de alta calidad, solo el 34% de ellas no tenía ningún criterio de exclusión que permitiera su clasificación con los algoritmos de última generación de ML. Este hecho disminuye considerablemente la utilidad diagnóstica en la práctica clínica diaria de algunos sistemas de ML. Por otro lado, las lesiones de gran tamaño representan un problema importante para la utilización de los algoritmos de ML, ya que estas no se ajustan al diámetro de la mayoría de las lentes dermatoscópicas. Esto afecta la clasificación mediante la mayoría de algoritmos de ML, que requieren de la segmentación de la imagen para su análisis<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">1</span></a>. Por otro lado, aunque en algunos trabajos se han propuesto métodos de detección/eliminación del vello<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">5</span></a>, el rendimiento de la mayoría de los sistemas de ML se ve perjudicado por su presencia. Por último, cabe destacar que las bases de datos empleadas para el entrenamiento de los algoritmos actuales tienen poca representación de imágenes de lesiones de piel volar, lo que dificulta la correcta clasificación en estas localizaciones. Afortunadamente se está avanzando rápidamente para superar estas limitaciones en la selección de imágenes para la inteligencia artificial. Como muestra de ello, Yu et al.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">7</span></a> publicaron recientemente un trabajo en el que se utilizó el DCNN para la clasificación de melanoma acral y de nevus en piel volar. En el presente trabajo se consideraron las limitaciones de la mayoría, pero no de todos los sistemas de ML existentes en la actualidad.</p><p id="par0030" class="elsevierStylePara elsevierViewall">Nuestro estudio muestra que los principales criterios de exclusión de imágenes de melanoma para clasificación mediante ML, fueron la ausencia de piel normal circundante y la ausencia de pigmentación. Gran parte de los melanomas se desarrollan sobre piel con daño actínico, por lo que la piel circundante puede ser patológica, lo que dificulta su análisis por la mayoría de los sistemas de ML actuales, ya que el borde de la lesión no está bien definido<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">5</span></a>. Además, el melanoma amelanótico, que representa del 2% al 8% de todos los melanomas<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">8</span></a>, aún no se puede diagnosticar correctamente por la mayoría de los sistemas actuales de ML. Consideramos que todas estas limitaciones podrían resolverse a partir del diseño de algoritmos de ML que puedan trabajar con imágenes incompletas, incrementando el tamaño de las bases de datos y seleccionando un mayor número de imágenes de dermatoscopia que sean representativas de la práctica clínica habitual.</p><p id="par0035" class="elsevierStylePara elsevierViewall">En conclusión, consideramos que los sistemas de ML, especialmente aquellos basados en el «deep learning», no solo convertirán el ML en una herramienta valiosa para el dermatólogo, sino también para la población en general. Sin embargo, estos sistemas deberán superar algunas limitaciones que les permitirán ampliar el espectro de las imágenes clasificables. El avance en los últimos años ha sido rápido y evidente ya que, incluso algunos de los criterios de exclusión que hemos tenido en cuenta en este trabajo han sido recientemente resueltos por algoritmos presentados en el Simposio Internacional ISIC<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">3</span></a>.</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Financiación</span><p id="par0040" class="elsevierStylePara elsevierViewall">Este estudio de la Unidad de Melanoma, Hospital Clínic, Barcelona fue financiado en parte por subvenciones del Fondo de Investigaciones Sanitarias P.I. 12/00840, PI15/00956 y PI15/00716 España; por el CIBER de Enfermedades Raras del Instituto de Salud Carlos III, España, cofinanciado por el Fondo Europeo de Desarrollo Regional (FEDER). Unión Europea. Una manera de hacer Europa; por el AGAUR 2014_SGR_603 y 2017_SGR_1134 del Gobierno catalán, España; por una beca de la «Fundació La Marató de TV3, 201331-30», Cataluña, España; por la Comisión Europea bajo el 6.° Programa Marco, Contrato n.°: LSHC-CT-2006-018702 (GenoMEL); por el programa CERCA/Generalitat de Catalunya y por una beca de investigación de la Fundación Científica de la Asociación Española Contra el Cáncer GCB15152978SOEN, España. Parte del trabajo se desarrolló en el edificio Centro Esther Koplowitz, Barcelona.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Conflicto de intereses</span><p id="par0045" class="elsevierStylePara elsevierViewall">Los autores declaran no tener ningún conflicto de intereses.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres1388541" "titulo" => "Resumen" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Antecedentes" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Objetivo" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Métodos" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Resultados" ] 4 => array:2 [ "identificador" => "abst0025" "titulo" => "Discusión" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1274018" "titulo" => "Palabras clave" ] 2 => array:3 [ "identificador" => "xres1388540" "titulo" => "Abstract" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "abst0030" "titulo" => "Background" ] 1 => array:2 [ "identificador" => "abst0035" "titulo" => "Objective" ] 2 => array:2 [ "identificador" => "abst0040" "titulo" => "Methods" ] 3 => array:2 [ "identificador" => "abst0045" "titulo" => "Results" ] 4 => array:2 [ "identificador" => "abst0050" "titulo" => "Discussion" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1274019" "titulo" => "Keywords" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introducción" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Materiales y métodos" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Resultados" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "Discusión" ] 8 => array:2 [ "identificador" => "sec0025" "titulo" => "Financiación" ] 9 => array:2 [ "identificador" => "sec0030" "titulo" => "Conflicto de intereses" ] 10 => array:2 [ "identificador" => "xack482845" "titulo" => "Agradecimientos" ] 11 => array:1 [ "titulo" => "Bibliografía" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2019-08-11" "fechaAceptado" => "2019-09-16" "PalabrasClave" => array:2 [ "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1274018" "palabras" => array:7 [ 0 => "Melanoma" 1 => "Cáncer de piel" 2 => "Dermatoscopia" 3 => "Clasificación de imágenes" 4 => "Aprendizaje automático" 5 => "Inteligencia artificial" 6 => "Redes neuronales convolucionales" ] ] ] "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1274019" "palabras" => array:7 [ 0 => "Melanoma" 1 => "Skin cancer" 2 => "Dermoscopy" 3 => "Image classification" 4 => "Machine learning" 5 => "Artificial Intelligence" 6 => "Convolutional neural networks" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Antecedentes</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">La clasificación automática de imágenes es una rama prometedora del aprendizaje automático (de sus siglas en inglés Machine Learning [ML]), y es una herramienta útil en el diagnóstico de cáncer de piel. Sin embargo, poco se ha estudiado acerca de las limitaciones de su uso en la práctica clínica diaria.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Objetivo</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Determinar las limitaciones que existen en cuanto a la selección de imágenes usadas para el análisis por ML de las neoplasias cutáneas, en particular del melanoma.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Métodos</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Se diseñó un estudio de cohorte retrospectivo, donde se incluyeron de forma consecutiva 2.849 imágenes dermatoscópicas de alta calidad de tumores cutáneos para su valoración por un sistema de ML, recogidas entre los años 2010 y 2014. Cada imagen dermatoscópica fue clasificada según las características de elegibilidad para el análisis por ML.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Resultados</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">De las 2.849 imágenes elegidas a partir de nuestra base de datos, 968 (34%) cumplieron los criterios de inclusión. De los 528 melanomas, 335 (63,4%) fueron excluidos. La ausencia de piel normal circundante (40,5% de todos los melanomas de nuestra base de datos) y la ausencia de pigmentación (14,2%) fueron las causas más frecuentes de exclusión para el análisis por ML.</p></span> <span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Discusión</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Solo el 36,6% de nuestros melanomas se consideraron aceptables para el análisis por sistemas de ML de última generación. Concluimos que los futuros sistemas de ML deberán ser entrenados a partir de bases de datos más grandes que incluyan imágenes representativas de la práctica clínica habitual. Afortunadamente, muchas de estas limitaciones están siendo superadas gracias a los avances realizados recientemente por la comunidad científica, como se ha demostrado en trabajos recientes.</p></span>" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Antecedentes" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Objetivo" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Métodos" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Resultados" ] 4 => array:2 [ "identificador" => "abst0025" "titulo" => "Discusión" ] ] ] "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Background</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Automated image classification is a promising branch of machine learning (ML) useful for skin cancer diagnosis, but little has been determined about its limitations for general usability in current clinical practice.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Objective</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">To determine limitations in the selection of skin cancer images for ML analysis, particularly in melanoma.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Methods</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Retrospective cohort study design, including 2,849 consecutive high-quality dermoscopy images of skin tumors from 2010 to 2014, for evaluation by a ML system. Each dermoscopy image was assorted according to its eligibility for ML analysis.</p></span> <span id="abst0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Results</span><p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Of the 2,849 images chosen from our database, 968 (34%) met the inclusion criteria for analysis by the ML system. Only 64.7% of nevi and 36.6% of melanoma met the inclusion criteria. Of the 528 melanomas, 335 (63.4%) were excluded. An absence of normal surrounding skin (40.5% of all melanomas from our database) and absence of pigmentation (14.2%) were the most common reasons for exclusion from ML analysis.</p></span> <span id="abst0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Discussion</span><p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Only 36.6% of our melanomas were admissible for analysis by state-of-the-art ML systems. We conclude that future ML systems should be trained on larger datasets which include relevant non-ideal images from lesions evaluated in real clinical practice. Fortunately, many of these limitations are being overcome by the scientific community as recent works show.</p></span>" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "abst0030" "titulo" => "Background" ] 1 => array:2 [ "identificador" => "abst0035" "titulo" => "Objective" ] 2 => array:2 [ "identificador" => "abst0040" "titulo" => "Methods" ] 3 => array:2 [ "identificador" => "abst0045" "titulo" => "Results" ] 4 => array:2 [ "identificador" => "abst0050" "titulo" => "Discussion" ] ] ] ] "multimedia" => array:1 [ 0 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Tabla 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Tabla " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:2 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Presencia de algún criterio potencial de exclusión (% del total por localización o diagnóstico)</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Ausencia de algún criterio potencial de exclusión (% del total por localización o diagnóstico)</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Total \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Localización</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Cabeza y cuello \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">633 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(76,8%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">191 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(23,2%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">824 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Extremidades superiores \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">159 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(62,1%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">97 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(37,9%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">256 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Extremidades inferiores \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">297 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(60,4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">195 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(39,6%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">492 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Piel volar \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">62 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(100%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(0%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">62 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Tronco \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">538 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(53,1%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">475 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(46,9%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1013 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Mucosas \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(83,3%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(16,7%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Otro \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">149 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(81%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(19%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">184 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Diagnóstico</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Carcinoma basocelular \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">295 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(69,6%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">129 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(30,4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">424 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Carcinoma epidermoide \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">59 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(89,4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(10,6%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">66 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Cicatriz \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(77,8%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(22,2%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">27 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Dermatofibroma \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(77,3%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(22,7%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Lentigo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">26 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(66,7%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(33,3%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">39 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Melanoma \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">335 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(63,4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">193 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(36,6%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">528 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Metástasis cutánea \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(100%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Nevus \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">256 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(35,3%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">470 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(64,7%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">726 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Queratosis actínica \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">137 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(78,3%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">38 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(21,7%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">175 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Queratosis seborreica \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(67,9%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">45 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(32,1%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">140 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Otros \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">225 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(82,4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">48 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(17,6%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">273 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Diagnóstico patológico NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">- \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">- \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">- \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">- \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">420 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2383777.png" ] ] 1 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">B. Razones de exclusión.</th></tr><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Melanoma \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Número de excluidos (% del total de melanomas) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Razones de exclusión</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ausencia de pigmentación \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">75 (14,2%) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ausencia de piel circundante normal \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">214 (40,5%) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Presencia de pelo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">28 (5,3%) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Metástasis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">29 (5,5%) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Localización en piel volar \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23 (4,4%) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Lesión ulcerada \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">19 (3,6%) \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2383778.png" ] ] ] ] "descripcion" => array:1 [ "es" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">A. Imágenes seleccionadas para el análisis por ML. Localización y diagnóstico</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "Bibliografía" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:8 [ 0 => array:3 [ "identificador" => "bib0045" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Digital imaging biomarkers feed machine learning for melanoma screening" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D.S. Gareau" 1 => "J. Correa da Rosa" 2 => "S. Yagerman" 3 => "J.A. Carucci" 4 => "N. Gulati" 5 => "F. Hueto" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Exp Dermatol." "fecha" => "2017" "volumen" => "26" "paginaInicial" => "615" "paginaFinal" => "618" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0050" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. Fujisawa" 1 => "Y. Otomo" 2 => "Y. Ogata" 3 => "Y. Nakamura" 4 => "R. Fujita" 5 => "Y. Ishitsuka" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:2 [ "tituloSerie" => "Br J Dermatol." "fecha" => "2018." ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0055" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.A. Marchetti" 1 => "N.C.F. Codella" 2 => "S.W. Dusza" 3 => "D.A. Gutman" 4 => "B. Helba" 5 => "A. Kalloo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jaad.2017.08.016" "Revista" => array:6 [ "tituloSerie" => "J Am Acad Dermatol." "fecha" => "2018" "volumen" => "78" "paginaInicial" => "270" "paginaFinal" => "277" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28969863" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0060" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P. Tschandl" 1 => "C. Rosendahl" 2 => "H. Kittler" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/sdata.2018.161" "Revista" => array:5 [ "tituloSerie" => "Sci Data." "fecha" => "2018" "volumen" => "5" "paginaInicial" => "180161" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30106392" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0065" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Celebi M, Wen Q, Iyatomi H, Shimizu K, Zhou H, Schaefer G. A state-of-the-art survey on lesion border detection in dermoscopy images. In: Celebi ME, Mendonca T, Marques J, eds. Dermoscopy image analysis. Boca Raton, FL: CRC Press; 2015." ] ] ] 5 => array:3 [ "identificador" => "bib0070" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dermatologist-level classification of skin cancer with deep neural networks" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A. Esteva" 1 => "B. Kuprel" 2 => "R.A. Novoa" 3 => "J. Ko" 4 => "S.M. Swetter" 5 => "H.M. Blau" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature21056" "Revista" => array:6 [ "tituloSerie" => "Nature." "fecha" => "2017" "volumen" => "542" "paginaInicial" => "115" "paginaFinal" => "118" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28117445" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0075" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Acral melanoma detection using a convolutional neural network for dermoscopy images" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Yu" 1 => "S. Yang" 2 => "W. Kim" 3 => "J. Jung" 4 => "K.Y. Chung" 5 => "S.W. Lee" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0193321" "Revista" => array:5 [ "tituloSerie" => "PLoS One." "fecha" => "2018" "volumen" => "13" "paginaInicial" => "e0193321" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29513718" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0080" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dermoscopic diagnosis of amelanotic/hypomelanotic melanoma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.A. Pizzichetta" 1 => "H. Kittler" 2 => "I. Stanganelli" 3 => "G. Ghigliotti" 4 => "M.T. Corradin" 5 => "P. Rubegni" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/bjd.15093" "Revista" => array:6 [ "tituloSerie" => "Br J Dermatol." "fecha" => "2017" "volumen" => "177" "paginaInicial" => "538" "paginaFinal" => "540" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27681347" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack482845" "titulo" => "Agradecimientos" "texto" => "<p id="par0050" class="elsevierStylePara elsevierViewall">Gracias a nuestros pacientes y a sus familias, que son la razón principal de nuestros estudios; a las enfermeras de la Unidad de Melanoma del Hospital Clínic de Barcelona, Daniel Gabriel, Pablo Iglesias y María E. Moliner por ayudar a recopilar datos de pacientes y a Paul Hetherington por ayudar con la edición y la corrección al inglés del manuscrito.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "es" "url" => "/00017310/0000011100000004/v3_202009220625/S0001731020300041/v3_202009220625/es/main.assets" "Apartado" => array:4 [ "identificador" => "6163" "tipo" => "SECCION" "es" => array:2 [ "titulo" => "Originales" "idiomaDefecto" => true ] "idiomaDefecto" => "es" ] "PDF" => "https://static.elsevier.es/multimedia/00017310/0000011100000004/v3_202009220625/S0001731020300041/v3_202009220625/es/main.pdf?idApp=UINPBA000044&text.app=https://actasdermo.org/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020300041?idApp=UINPBA000044" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 5 | 3 | 8 |
2024 October | 154 | 47 | 201 |
2024 September | 126 | 28 | 154 |
2024 August | 139 | 67 | 206 |
2024 July | 127 | 36 | 163 |
2024 June | 150 | 48 | 198 |
2024 May | 166 | 58 | 224 |
2024 April | 122 | 30 | 152 |
2024 March | 122 | 35 | 157 |
2024 February | 101 | 38 | 139 |
2024 January | 81 | 34 | 115 |
2023 December | 74 | 17 | 91 |
2023 November | 103 | 33 | 136 |
2023 October | 124 | 30 | 154 |
2023 September | 88 | 34 | 122 |
2023 August | 75 | 14 | 89 |
2023 July | 120 | 35 | 155 |
2023 June | 57 | 26 | 83 |
2023 May | 100 | 28 | 128 |
2023 April | 54 | 19 | 73 |
2023 March | 75 | 28 | 103 |
2023 February | 49 | 29 | 78 |
2023 January | 53 | 26 | 79 |
2022 December | 64 | 34 | 98 |
2022 November | 64 | 54 | 118 |
2022 October | 98 | 62 | 160 |
2022 September | 51 | 44 | 95 |
2022 August | 69 | 68 | 137 |
2022 July | 48 | 53 | 101 |
2022 June | 67 | 61 | 128 |
2022 May | 66 | 42 | 108 |
2022 April | 56 | 35 | 91 |
2022 March | 54 | 43 | 97 |
2022 February | 41 | 29 | 70 |
2022 January | 53 | 55 | 108 |
2021 December | 41 | 52 | 93 |
2021 November | 52 | 55 | 107 |
2021 October | 56 | 70 | 126 |
2021 September | 34 | 44 | 78 |
2021 August | 38 | 33 | 71 |
2021 July | 40 | 38 | 78 |
2021 June | 37 | 29 | 66 |
2021 May | 30 | 46 | 76 |
2021 April | 58 | 79 | 137 |
2021 March | 41 | 52 | 93 |
2021 February | 41 | 47 | 88 |
2021 January | 55 | 26 | 81 |
2020 December | 32 | 36 | 68 |
2020 November | 33 | 42 | 75 |
2020 October | 15 | 22 | 37 |
2020 September | 53 | 35 | 88 |
2020 August | 54 | 62 | 116 |
2020 July | 67 | 44 | 111 |
2020 June | 88 | 53 | 141 |
2020 May | 89 | 50 | 139 |
2020 April | 97 | 55 | 152 |