se ha leído el artículo
array:25 [ "pii" => "S1578219021001487" "issn" => "15782190" "doi" => "10.1016/j.adengl.2021.03.011" "estado" => "S300" "fechaPublicacion" => "2021-06-01" "aid" => "2586" "copyright" => "AEDV" "copyrightAnyo" => "2021" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "rev" "cita" => "Actas Dermosifiliogr. 2021;112:495-502" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "es" => array:20 [ "pii" => "S0001731021000053" "issn" => "00017310" "doi" => "10.1016/j.ad.2020.12.005" "estado" => "S300" "fechaPublicacion" => "2021-06-01" "aid" => "2586" "copyright" => "AEDV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "rev" "cita" => "Actas Dermosifiliogr. 2021;112:495-502" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Revisión</span>" "titulo" => "Alopecia y microbioma: ¿futura diana terapéutica?" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "495" "paginaFinal" => "502" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Alopecia and the Microbiome: A Future Therapeutic Target?" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figura 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1699 "Ancho" => 1500 "Tamanyo" => 98161 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Criterios de selección.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "D. Barquero-Orias, O. Muñoz Moreno-Arrones, S. Vañó-Galván" "autores" => array:3 [ 0 => array:2 [ "nombre" => "D." "apellidos" => "Barquero-Orias" ] 1 => array:2 [ "nombre" => "O." "apellidos" => "Muñoz Moreno-Arrones" ] 2 => array:2 [ "nombre" => "S." "apellidos" => "Vañó-Galván" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S1578219021001487" "doi" => "10.1016/j.adengl.2021.03.011" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219021001487?idApp=UINPBA000044" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731021000053?idApp=UINPBA000044" "url" => "/00017310/0000011200000006/v1_202106081644/S0001731021000053/v1_202106081644/es/main.assets" ] ] "itemSiguiente" => array:20 [ "pii" => "S1578219021001499" "issn" => "15782190" "doi" => "10.1016/j.adengl.2021.03.012" "estado" => "S300" "fechaPublicacion" => "2021-06-01" "aid" => "2581" "copyright" => "AEDV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "rev" "cita" => "Actas Dermosifiliogr. 2021;112:503-15" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review</span>" "titulo" => "Janus Kinase Inhibitors in Dermatology: Part 1 — General Considerations and Applications in Vitiligo and Alopecia Areata" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "503" "paginaFinal" => "515" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Inhibidores de JAK: usos en dermatología. Parte 1: generalidades, aplicaciones en vitíligo y en alopecia areata" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2086 "Ancho" => 3175 "Tamanyo" => 249080 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">JAK/STAT pathway and mechanism of action of JAK inhibitors.</p> <p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">A, JAK/STAT pathway. The cytokine binds to the receptor, thus activating JAK proteins via phosphorylation. The activated JAK protein phosphorylates the STAT protein, in turn activating it. Activated STAT is translocated to the nucleus. Activated STAT protein acts as a transcription factor and binds to DNA, thus regulating the transcription of a wide variety of genes and affecting cell growth and apoptosis. B, Mechanism of action of JAK inhibitors. The inhibitors bind to the binding site of adenosine triphosphate of the JAK dimer, thus preventing autophosphorylation and activation. Similarly, without activation of JAK, the protein STAT cannot be activated or translocated to the nucleus, resulting in reduced transcription of proinflammatory genes. Figure generated with the assistance of Biorender.com. JAK indicates Janus kinase; JAKi, JAK inhibitor; STAT, signal transducer and activator of transcription.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "C. Garcia-Melendo, X. Cubiró, L. Puig" "autores" => array:3 [ 0 => array:2 [ "nombre" => "C." "apellidos" => "Garcia-Melendo" ] 1 => array:2 [ "nombre" => "X." "apellidos" => "Cubiró" ] 2 => array:2 [ "nombre" => "L." "apellidos" => "Puig" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0001731020305548" "doi" => "10.1016/j.ad.2020.12.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020305548?idApp=UINPBA000044" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219021001499?idApp=UINPBA000044" "url" => "/15782190/0000011200000006/v1_202106020933/S1578219021001499/v1_202106020933/en/main.assets" ] "itemAnterior" => array:20 [ "pii" => "S1578219021001505" "issn" => "15782190" "doi" => "10.1016/j.adengl.2021.03.013" "estado" => "S300" "fechaPublicacion" => "2021-06-01" "aid" => "2575" "copyright" => "AEDV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "rev" "cita" => "Actas Dermosifiliogr. 2021;112:489-94" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review</span>" "titulo" => "Obesity — A Risk Factor for Psoriasis and COVID-19" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "489" "paginaFinal" => "494" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Obesidad: factor de riesgo para psoriasis y COVID-19" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "M. Llamas-Velasco, E. Ovejero-Merino, L. Salgado-Boquete" "autores" => array:3 [ 0 => array:2 [ "nombre" => "M." "apellidos" => "Llamas-Velasco" ] 1 => array:2 [ "nombre" => "E." "apellidos" => "Ovejero-Merino" ] 2 => array:2 [ "nombre" => "L." "apellidos" => "Salgado-Boquete" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0001731020305482" "doi" => "10.1016/j.ad.2020.12.001" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020305482?idApp=UINPBA000044" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219021001505?idApp=UINPBA000044" "url" => "/15782190/0000011200000006/v1_202106020933/S1578219021001505/v1_202106020933/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review</span>" "titulo" => "Alopecia and the Microbiome: A Future Therapeutic Target?" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "495" "paginaFinal" => "502" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "D. Barquero-Orias, O. Muñoz Moreno-Arrones, S. Vañó-Galván" "autores" => array:3 [ 0 => array:4 [ "nombre" => "D." "apellidos" => "Barquero-Orias" "email" => array:1 [ 0 => "drdanielbarquero@gmail.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "*" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "O." "apellidos" => "Muñoz Moreno-Arrones" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 2 => array:3 [ "nombre" => "S." "apellidos" => "Vañó-Galván" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "Dermatología Integral, San José, Costa Rica" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Servicio de Dermatología, Unidad de Tricología, Grupo de Investigación #TricoHRC, Hospital Universitario Ramón y Cajal, Madrid, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Alopecia y microbioma: ¿futura diana terapéutica?" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1579 "Ancho" => 2925 "Tamanyo" => 240148 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0015" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Distribution of fungal colonization of the scalps of patients with AGA and controls. AGA refers to androgenetic alopecia. Data source: Huang et al.<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a></p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">The microbiome describes the genome of all commensal, symbiotic, and pathogenic organisms in the human body, including viruses, bacteria, and fungi. The composition is influenced by such factors as age, nutrition, gender, and lifestyle. The rise in the prevalence of autoimmune diseases, especially in Western countries, has been thought to be related to modern lifestyles, their effect on the normal flora of the body, and consequent immune dysregulation. A state of dysbiosis can trigger T-cell dysregulation and cause a variety of disorders locally or at a distance. These changes in the intestinal or cutaneous microbiota can alter cell differentiation in both the innate and adaptive immune systems. Microbiota also modulate epithelial secretion of chemokines that attract immune cells.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> Scientists who are currently exploring how the gut microbiome can influence immunity at remote sites such as the skin have proposed the existence of a “skin-gut axis.”<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">An infectious cause of alopecia areata (AA) was hypothesized by David Gruby after he demonstrated the presence of <span class="elsevierStyleItalic">Microsporum audouini</span> around the hair follicles of individuals with the condition; the species was then blamed for epidemics in schools and orphanages.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> However, while some dermatologists did isolate diverse fungi in patients with AA, others failed to find associations between the disease and pathogens; as a result, attention was drawn away from a role for infection.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> Nevertheless, there could be a possible role for pathogenic antigens and their increased activity in the immune system, which could induce AA via epitope similarity.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> Another suggested role for gut microbiota is an effect on the differentiation of peripheral lymphocytes, given that some regulatory T cells (Tregs) could be redirected to a part of the intestine where molecular and microbial signals convert forkhead box P3 negative (Foxp3<span class="elsevierStyleSup">–</span>) CD4<span class="elsevierStyleSup">+</span> Treg cells to Foxp3<span class="elsevierStyleSup">+</span> ones.<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a></p><p id="par0015" class="elsevierStylePara elsevierViewall">The role of microbiota in the pathogenesis of various diseases is an emerging area of research.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> Doubts remain about whether dysbiosis is a primary cause of disease or a secondary one associated with changes caused by a primary mechanism,<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">1,5</span></a> but the possibility that therapeutic manipulation of the microbiome might be an option in conditions such as AA has been suggested.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> This review summarizes recent evidence on the associations between the microbiome, the process of dysbiosis, its relation to alopecia, and the implications for therapy. We also discuss the composition of the microbiome and differences between that of healthy persons and patients with various types of alopecia.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Methods</span><p id="par0020" class="elsevierStylePara elsevierViewall">This is a narrative review of the subject. We obtained articles published between 2015 and 2020 by searching in the Cochrane Library Plus, Scielo, DynaMed, PubMed, and Google Scholar. The search terms were <span class="elsevierStyleItalic">microb*</span> AND <span class="elsevierStyleItalic">alopecia</span>. To identify the articles relevant to the purposes of the review (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>), we read abstracts and results, and when necessary, the full texts to ascertain which ones contained pertinent information.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Results</span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Normal Microbiome of the Skin and Hair Follicles</span><p id="par0025" class="elsevierStylePara elsevierViewall">The scalp has its own microbiome<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> in a humid environment protected from UV light and with a pH favorable to microbial growth. The environment contrasts with that of other skin surfaces, which are dry, exposed to UV light, and have a low pH. There exist additional differences related to area of the body, ethnicity, gender, and the environment.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a></p><p id="par0030" class="elsevierStylePara elsevierViewall">Few studies have produced data on the microbiome of hair follicles. However, there is evidence that bacteria of the phyla Actinobacteria, Firmicutes, and Proteobacteria predominate on the surface of the scalp<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> and that the most abundant organisms are <span class="elsevierStyleItalic">Cutibacterium</span> species (especially <span class="elsevierStyleItalic">Cutibacterium acnes</span>) and <span class="elsevierStyleItalic">Staphylococcus</span> species (especially <span class="elsevierStyleItalic">Staphylococcus epidermidis</span>). Other bacteria found on the scalp are <span class="elsevierStyleItalic">Corynebacterium</span>, <span class="elsevierStyleItalic">Streptococcus</span>, <span class="elsevierStyleItalic">Acinetobacter,</span> and <span class="elsevierStyleItalic">Prevotella</span> species.<a class="elsevierStyleCrossRefs" href="#bib0035"><span class="elsevierStyleSup">7,8</span></a> The most prevalent fungi on the scalp are <span class="elsevierStyleItalic">Malassezia globosa</span> and <span class="elsevierStyleItalic">Malassezia restricta</span>. Fungi in 2 phyla are present: Ascomycota (<span class="elsevierStyleItalic">Acremonium</span> species, <span class="elsevierStyleItalic">Didymella bryoniae</span>, <span class="elsevierStyleItalic">Coniochaeta</span> species, and <span class="elsevierStyleItalic">Rhodotorula</span> species) and Basidiomycota (<span class="elsevierStyleItalic">Cryptococcus liquefaciens</span> and <span class="elsevierStyleItalic">Cryptococcus diffluens</span>).<a class="elsevierStyleCrossRefs" href="#bib0035"><span class="elsevierStyleSup">7,8</span></a></p><p id="par0035" class="elsevierStylePara elsevierViewall">Scalp colonization by eukaryotic DNA viruses such as adeno-associated virus subtype 2<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> and the human papilloma virus has been reported.<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">1,7</span></a><span class="elsevierStyleItalic">Demodex folliculorum</span> has been found in the follicular infundibulum and <span class="elsevierStyleItalic">Demodex brevis</span> in the sebaceous glands. In addition, Naspitz et al<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> found <span class="elsevierStyleItalic">Dermatophagoides</span> and <span class="elsevierStyleItalic">Euroglyphus</span> species on the scalp. Although it is not known whether these microorganisms contribute to the physiology of the hair follicle, it is known that they can generate proinflammatory and immunosuppressive responses.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a></p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Dysbiosis and Disease</span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Alopecia Areata</span><p id="par0040" class="elsevierStylePara elsevierViewall">One study that sequenced the scalp microbiome of healthy subjects and patients with AA found between-group variation in bacterial populations: the proportions of bacteria in the Actinobacteria and Firmicutes phyla, respectively, were 57.4% and 29.2% in the AA group and 56.3% and 35.2% in the control group.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> The proportions assigned to <span class="elsevierStyleItalic">Propionibacterium</span> and <span class="elsevierStyleItalic">Staphylococcus</span> species in the AA group were 55.1% and 27.4%, respectively, and 45.6% and 32.6% in controls.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> (Some patients with AA are known to experience a significant increase in <span class="elsevierStyleItalic">P acnes.</span><a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a>)<a class="elsevierStyleCrossRef" href="#fn0005">*</a> Alpha diversity was also higher in the patients, in whom there was a decrease in the proportion of <span class="elsevierStyleItalic">S epidermidis,</span><a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> while <span class="elsevierStyleItalic">Staphylococcus aureus</span> proportions remained stable.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> The authors found no significant differences in the <span class="elsevierStyleItalic">S epidermidis/S aureus</span> ratio, whereas the <span class="elsevierStyleItalic">P acnes/S epidermidis</span> and <span class="elsevierStyleItalic">P acnes/S aureus</span> ratios were higher.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> Polak-Witka et al<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> have noted that it is possible that <span class="elsevierStyleItalic">S aureus</span> superantigens, proteases, and toxins, along with direct interactions between immune cells and bacteria, may contribute to inflammation, altering the skin’s barrier function and affecting the follicular region.</p><p id="par0045" class="elsevierStylePara elsevierViewall">Changes in the microbiome of different compartments of the skin were also observed in the study.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> The proportions of bacteria on the epidermis assigned to the Actinobacteria and Bacteroidetes phyla, respectively, were 33.3% and 20.1% in the AA group and 22.4% and 9.9% in controls. In the dermis the proportions were as follows: Actinobacteria, 6.1% in AA and 11.3% in controls; Proteobacteria, 14.9% in AA and 8.1% in controls; and Bacteroidetes, 14.2% in AA and 4.0% in controls (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>). The bacterial proportions in the hypodermis were higher in patients with AA than in controls for the following phyla: Proteobacteria, Bacteroidetes, and Firmicutes. Finally, <span class="elsevierStyleItalic">Prevotella copri</span> was detected in all compartments analyzed in patients with AA, and <span class="elsevierStyleItalic">Akkermansia muciniphila</span> (<1.5% of the total microbiome) was detected in subcompartments (especially the hypodermis).</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><p id="par0050" class="elsevierStylePara elsevierViewall">The association between AA and <span class="elsevierStyleItalic">Helicobacter pylori</span> is disputed. Evidence of a role for this bacterium in various autoimmune conditions has been reported, and the resolution of alopecia after treatment for the infection has been observed, although the exact mechanism responsible is unknown.<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a></p><p id="par0055" class="elsevierStylePara elsevierViewall">AA has been linked to certain viral infections, such as swine flu (during the 2009–2010 outbreaks), other influenza infections, and mononucleosis (infection by the Epstein-Barr virus); a role for cytomegalovirus infection has also been debated.<a class="elsevierStyleCrossRefs" href="#bib0035"><span class="elsevierStyleSup">7,9</span></a> Cytomegaloviral DNA has been found in the follicular tissues of patients with AA.<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> Finally, a possible connection between this form of alopecia and infection by <span class="elsevierStyleItalic">Alternaria</span> species is possible, based on positive cultures in 20% of cases versus 13.3% of controls.<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a></p><p id="par0060" class="elsevierStylePara elsevierViewall">In addition to the cutaneous microbiome, the gut microbiome may be involved in AA. Increased permeability of the intestine due to dysbiosis and/or inflammation has been demonstrated, and it may place stress on the immune system in genetically susceptible individuals. Dysbiosis leads to a reduced production of short-chain fatty acids as a result of inadequate intake of fiber in so-called Western diets, altering the intestinal barrier and affecting Tregs, which modulate the immune system.<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> Patients in this state have been found to have increased populations of <span class="elsevierStyleItalic">Holdemania filiformis</span>, bacteria in the Erysipelotrichacea and Lachnospiraceae families<span class="elsevierStyleItalic">, Parabacteroides johnsonii, Clostridiales vadin</span> BB60 group<span class="elsevierStyleItalic">, Bacteroides eggerthii</span>, and <span class="elsevierStyleItalic">Parabacteroides distasonis</span>.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a> The same study also found an association between these colonizations and the presence of AA. Finally, the presence of <span class="elsevierStyleItalic">Lactobacillus</span> species in the gut has been shown to be essential to the induction of this type of hair loss.<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a></p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Androgenetic Alopecia</span><p id="par0065" class="elsevierStylePara elsevierViewall">Evidence points to the existence of microinflammation when multiple organisms are present in the superior third of the hair follicle, where <span class="elsevierStyleItalic">Cutibacterium</span> species have been found in 58% of patients with androgenetic alopecia (AGA) versus 12% of controls, according to literature reviewed by Polak-Witka et al.<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> These species secrete porphyrins, which stimulate complement activation. Moreover, symptom improvement has been observed after application of antimicrobial agents, supporting the likelihood of a role for scalp microbiota.</p><p id="par0070" class="elsevierStylePara elsevierViewall">A high load of <span class="elsevierStyleItalic">P acnes</span> in the follicles of miniaturized hairs of patients with AGA has been hypothesized.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> Species in the phyla Actinobacteria, Firmicutes, and Proteobacteria were shown to account for 98% of the scalp microbiota both on healthy scalps and in AGA in one study.<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a> The authors reported that species in the genera <span class="elsevierStyleItalic">Propionibacterium</span> and <span class="elsevierStyleItalic">Staphylococcus</span> account for about 90% of the bacterial load in both healthy subjects and individuals with AGA. The distributions of species in these 2 genera were similar in both groups, at 79% and 12%, respectively, for healthy subjects and 76.5% and 14%, respectively, in AGA. Individuals with AGA had increased presence of <span class="elsevierStyleItalic">Stenotrophomonas geniculate</span>, and the <span class="elsevierStyleItalic">C acnes</span>/<span class="elsevierStyleItalic">S epidermidis</span> ratio was also higher than in control subjects.</p><p id="par0075" class="elsevierStylePara elsevierViewall">That study enrolled men with grade 3-4 alopecia on the Hamilton-Norwood scale and women with grade II hair loss on the Ludwig scale.<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a> The patients refrained from treating their hair with permanents or dyes for 2 months before the study started. They also refrained from using hair-loss shampoos and oral or topical antifungal treatments for 1 month. None had a history of scalp diseases such as folliculitis, lice infestation, or AA. The authors formed 2 groups: patients with alopecia and controls. A higher rate of bacterial colonization was found in the AGA group (60%) than in the controls (40%). The species found on the vertex of the scalp in controls belonged to the phyla Ascomycota (73.16%), Basidiomycota (24.94%), and Zygomycota<a class="elsevierStyleCrossRef" href="#fn0010"><span class="elsevierStyleSup">†</span></a> (1.41%). The occipital scalp region in the control group was colonized by microbes in these phyla in the following proportions: Ascomycota, 63.78%; Basidiomycota, 34.37%; Zygomycota, 0.62%; and other, 1.23%. At the crown of the scalp, species in these phyla accounted for the following proportions of fungal colonization in patients with AGA: Ascomycota, 35.58%; Basidiomycota, 61.03%; Zygomycota, 0.40%; and other, 2.99%. Occipital colonization by species in these phyla in AGA patients was distributed as follows: Ascomycota, 41.18%; Basidiomycota, 54.21%; Zygomycota, 1.87%; and other, 2.74% (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>). The <span class="elsevierStyleItalic">Malassezia</span> species load at the vertex was significantly greater in the men with AGA than in the control group, but the loads were similar in the occipital region in both groups. The load was significantly higher at the vertex than in the occipital region in the patient group; in contrast, the 2 scalp regions had similar fungal loads in the control group.<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a> Although <span class="elsevierStyleItalic">M restricta</span> and <span class="elsevierStyleItalic">M globosa</span> have been reported to be among the most abundant species on the scalp,<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> some researchers have observed lower proportions of <span class="elsevierStyleItalic">M globosa</span> and <span class="elsevierStyleItalic">M restricta</span> in AGA patients (52%) than in controls (56%).<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a> It has been suggested that <span class="elsevierStyleItalic">Demodex</span> species play a role in AGA and seborrheic dermatitis.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a></p><elsevierMultimedia ident="fig0015"></elsevierMultimedia></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Scarring Alopecia</span><p id="par0080" class="elsevierStylePara elsevierViewall">Whether the massive bacterial superinfection that is associated with some scarring alopecias is part of a primary pathogenic mechanism or is secondary to inflammatory changes that lead to hair follicle dysbiosis is a subject of debate. This is the case for folliculitis decalvans (FD). The fact that antibiotic therapy by itself is usually ineffective and the condition responds better to retinoids does not rule out dysbiosis as the possible trigger for neutrophilic folliculitis, involving, for example, keratinocytes that secrete neutrophil-attracting cytokines and chemokines.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a> The presence of <span class="elsevierStyleItalic">S aureus</span> in cultures and a temporary response to antibiotic treatment points to infection as the trigger.<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a></p><p id="par0085" class="elsevierStylePara elsevierViewall">A Spanish study in patients with the typical neutrophilic pattern of FD demonstrated the presence of <span class="elsevierStyleItalic">Staphylococcus</span> species in 25.9% of diseased hair follicles biopsied from affected parts of the scalp.<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a> These bacteria were present in only 6.6% of the healthy follicles. However, <span class="elsevierStyleItalic">S aureus</span> infection is opportunistic in FD rather than causative, given that some patients show active disease even in the absence of significant levels of this pathogen, especially in lichenoid forms of FD. In addition, these bacteria have been shown to be no more virulent than others in the general population. Therefore, a hypothesis that emerges is that immunologic vulnerability or an altered hair follicle structure leave an individual susceptible to scarring alopecia. The findings of this study contradict earlier theories about how FD develops.</p><p id="par0090" class="elsevierStylePara elsevierViewall">Moreover, Yip et al<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a> found that 80% of patients were colonized by <span class="elsevierStyleItalic">S aureus</span> on both lesional and healthy skin. They also demonstrated subepidermal colonization by <span class="elsevierStyleItalic">S aureus</span>. Invasion by this opportunistic species, which is the only one that has been shown to colonize over two thirds of patients with FD, points to a compromised epidermal barrier, as mentioned previously. The same study showed that antibiotic treatment did not fully restore the microbiota in patients with FD, suggesting a persistent defect in the epidermal barrier in this disease.</p><p id="par0095" class="elsevierStylePara elsevierViewall">Finally, <span class="elsevierStyleItalic">C acnes</span> bacteria have been observed to form biofilm-like structures in biopsy samples.<a class="elsevierStyleCrossRefs" href="#bib0035"><span class="elsevierStyleSup">7,14</span></a> Such biofilms may not initially appear to be pathogenic, but in addition to causing inflammation they provide a stable, protective environment from which bacteria can spread out and cause disease.<a class="elsevierStyleCrossRefs" href="#bib0035"><span class="elsevierStyleSup">7,14,15</span></a> Antibiotic treatment can eliminate bacteria released from biofilms and alleviate symptoms, but those that remain inside may still constitute a source of chronic infection.<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a></p><p id="par0100" class="elsevierStylePara elsevierViewall">FD was classified as a predominantly neutrophilic scarring alopecia in the past, but has recently been described as having a wide spectrum of presentations, including the possible co-occurrence of lichen planopilaris (LPP).<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a> Trichoscopy has revealed a dynamic shift in the FD phenotype toward LPP over time in this variant of liquenoid alopecia.<a class="elsevierStyleCrossRefs" href="#bib0065"><span class="elsevierStyleSup">13,15</span></a> One group proposed the Koebner phenomenon or the presence of an unrecognized secondary infection of LPP as mechanisms for chronic inflammation in FD.<span class="elsevierStyleSup">15</span> They also suggested the possibility of a phenotype of FD that includes LPP, in which both have a common origin in microbial dysbiosis that causes follicular damage or stress, leading to an inflammatory response and potential exposure to autoantigens and abnormal immune responses.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">15</span></a></p><p id="par0105" class="elsevierStylePara elsevierViewall">Matard et al<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a> showed that patients with the FD-LPP had lower loads of <span class="elsevierStyleItalic">S aureus</span> (accounting for less than 20% of the follicular microbiota) than patients with classic FD, in whom the proportion exceeded 20%. Patients with the FD-LPP variant responded to oxacillin and lack the methicillin resistance (<span class="elsevierStyleItalic">mecA</span>) and Panton-Valentine leukocidin (<span class="elsevierStyleItalic">PVL</span>) genes. The authors also suggested that classical FD, characterized by a predominantly neutrophilic infiltrate, is best distinguished from the FD-LPP clinical variant by the presence of staphylococci. This difference suggests that the more acute neutrophilic form could be managed with antibiotics in its acute phases, whereas antiinflammatory agents might be the first line of therapy for managing the FD-LPP variant.</p></span></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Advances in Therapy</span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Fecal Transplantation</span><p id="par0110" class="elsevierStylePara elsevierViewall">Three case reports have described men with AA who experienced sustained follicular growth in response to fecal transplantation, supporting the theory that gut microbiota play a role in inducing this type of hair loss.<a class="elsevierStyleCrossRefs" href="#bib0035"><span class="elsevierStyleSup">7,16,17</span></a> Two of the men had the universalis form of AA.<a class="elsevierStyleCrossRefs" href="#bib0035"><span class="elsevierStyleSup">7,16</span></a> In the first case, a 38-year-old man whose condition was refractory to intralesional corticosteroid therapy, reported hair growth on his arms and head (including his face), which was confirmed at a clinical appointment 8 weeks later.<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">16</span></a> The response was maintained 3 years later. The second was a 20-year-old man with severe ileocolitis (Crohn disease) as well as a 2-year history of AA resistant to therapy with intralesional and topical corticosteroids, stearic acid, and laser.<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">16</span></a> He had received treatment for recurrent diarrhea due to <span class="elsevierStyleItalic">Clostridium difficile</span>. After a fecal transplant, his severity of alopecia (SALT) score improved from S4b (95% to 99% hair loss) to S2 (25% to 49% loss). The patient in the third case was an 86-year-old man with a history of noninfectious diarrhea associated with intestinal dysbiosis who also reported hair growth on his scalp and a change in color from white to black in some residual hairs without direct treatment of the scalp.<a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">17</span></a> The response to treatment was long-lasting in this case too.</p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Use of Postbiotics</span><p id="par0115" class="elsevierStylePara elsevierViewall">Platelet-rich plasma therapy is used in various types of alopecia. However, the treatment has limitations, among which is the variability of formulations (lack of a standardized platelet concentration). Modern biotechnology has created bioactive peptides able to simulate the activity of platelet growth factors. These peptides have similar efficacy and can be used topically; formulations for intralesional application may come in the future.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a></p><p id="par0120" class="elsevierStylePara elsevierViewall">Theories of an association between altered gut microbiota and hair loss, particularly in AA, have suggested a possible therapeutic role for microbial metabolites known as postbiotics. A double-blind placebo-controlled trial enrolling 160 participants with AA (SALT scores, S2–S5) aged 18 to 60 years assigned the treatment group to receive a preparation containing plantaracin A, <span class="elsevierStyleItalic">Lactobacillus kunkeei</span>, and an extract of <span class="elsevierStyleItalic">Tropaeolum majus</span> flowers.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a> The 2 groups had similar demographic characteristics and histories of disease refractory to topical and systemic treatments as well as phototherapy. They had not received treatment in the year prior to enrollment in the trial. Complete resolution of symptoms was observed in 47.50% in the treatment group and partial resolution in 13.75%; 6.25% of the actively treated participants had no response. In contrast, only 5% of the control participants achieved complete resolution.</p><p id="par0125" class="elsevierStylePara elsevierViewall">A large number of biomimetic peptides have been developed in an effort to overcome the limitations of platelet-rich plasma. Short chains of 10 to 15 aminoacids have been reported to behave similarly to natural growth factors by simulating their structure, their activity, or both.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a> These peptides have greater stability and specificity than platelet-rich plasma, are more economical, and can be more easily incorporated into topical formulations.</p><p id="par0130" class="elsevierStylePara elsevierViewall">Another study investigated the effect of probiotics on generating short-chain fatty acids, butyrate in particular.<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a> Chronic AA was not reversed in 16 weeks of treatment, but the Tregs/CD4<span class="elsevierStyleSup">+</span> ratio in cutaneous lymph nodes did improve in 15% of those in the treatment group (vs in 12% of controls).</p></span><span id="sec0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Other Possible Future Treatments</span><p id="par0135" class="elsevierStylePara elsevierViewall">Diviccaro et al<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">19</span></a> studied the long-term effect on microbiota of discontinuing finasteride in a rat model evaluating stool samples 1 month after stopping treatment. The alpha diversity did not change, but bacteria in the phylum Firmicutes decreased from baseline, whereas those in the phylum Bacteroidetes increased. Bacteria in the Bacteroidaceae and Prevotellaceae families were the most abundant, followed by species in the Lactobacillaceae, Lachnospiraceae, and Ruminococcacea families. <span class="elsevierStyleItalic">Bacteroides</span>, <span class="elsevierStyleItalic">Prevotella, Lactobacillus, Oscillospira, Lachnospira, Ruminococcus</span>, and <span class="elsevierStyleItalic">Coprococcus</span> species were most prevalent. In contrast, <span class="elsevierStyleItalic">Oscillospira</span> and <span class="elsevierStyleItalic">Lachnospira</span> species significantly declined in the absence of finasteride. Finally, in the group still on finasteride, bacteria in the Bacteroidetes phylum and the Prevotellaceae family increased, supporting the hypothesis that exposure to finasteride can affect the composition of gut microbiota.</p><p id="par0140" class="elsevierStylePara elsevierViewall">Borde and Åstrand<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">11</span></a> noted in a review of novel therapies that mammalian G-protein-coupled receptors 41 and 43 are possible therapeutic targets in immune disorders. Although their role is still not clear, the authors note, they cite GPR43-deficient mouse models that have demonstrated exacerbated or persistent inflammation in colitis, arthritis, and asthma, suggesting that this receptor may aggravate inflammatory diseases. Moreover, intestinal propionate may stimulate GPR43/41 or GPR43/109), inducing more Tregs that can protect hair follicles from an immune attack. The reviewers describe a pilot study that saw hair regrowth in 5 out of 5 mice 11 weeks after treatment with propionate versus none in the control group. After 4 more weeks, the researchers’ analysis of differences in cellularity with treatment found a large increase in the Treg/CD4<span class="elsevierStyleSup">+</span> ratio versus the control group. An attempt to replicate that study, however, could not produce the same effects on hair growth. Finally, prophylactic treatment was unable to prevent the development of disease symptoms.</p><p id="par0145" class="elsevierStylePara elsevierViewall">Polyphenols and terpenes have been said to have a positive effect on cells involved in follicular growth, by intensifying cellular proliferation in dermal papillae cells and increasing the concentrations of factors such as type 1 insulin-like growth factor and vascular endothelial growth factor, reducing oxidative stress and improving hair growth.<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a></p><p id="par0150" class="elsevierStylePara elsevierViewall">One study enrolled 12 patients with AGA between 40 and 65 years of age and classified as having stage 3 or 4 hair loss on the Hamilton-Norwood scale.<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a> When entering the study, the patients had not used antibiotics in the previous 30 days, had not used probiotics within 15 days, and had not shampooed within 48 hours. They had not undergone antitumor, immunosuppressant, or radiotherapy (3 months), used topical or hormone treatments for hair growth (3 months), or used minoxidil or finasteride (6 months). Nor did they have a history of other progressive dermatologic or inflammatory diseases affecting the scalp (such as psoriasis; seborrheic dermatitis; or severe erythema, excoriation, or sunburn). A phototrichogram was used to assess hair density on days 1 and 84, focusing mainly on Hamilton-Norwood stage 3 hair loss. A preparation containing a 1% extract of <span class="elsevierStyleItalic">Lindera strychnifolia</span> and a placebo preparation were applied twice daily for 84 days on 2 areas of the scalp (treatment and placebo areas). Application of the active treatment did not affect alpha diversity but did achieve maintenance of bacterial biodiversity. The researchers reported a significant decrease in <span class="elsevierStyleItalic">C acnes</span> (15%), an increase in <span class="elsevierStyleItalic">S epidermidis</span> (33%), and a decrease in the <span class="elsevierStyleItalic">C acnes/S epidermidis</span> ratio (37.8%). The <span class="elsevierStyleItalic">L strychnifolia</span> application reestablished “normal” fungal populations, especially fungi of the Basidiomycota phylum and 3 genera (<span class="elsevierStyleItalic">Wallemia, Eurotium</span>, and <span class="elsevierStyleItalic">Malassezia</span>). The researchers observed abundant <span class="elsevierStyleItalic">Malassezia</span> species, which increased by 3%, and <span class="elsevierStyleItalic">M restricta</span> loads were restored to the level of the healthy controls. <span class="elsevierStyleItalic">Eurotium</span> and <span class="elsevierStyleItalic">Wallemia</span> species were seen to decrease. Finally, hair growth increased significantly, by 7%.</p></span></span></span><span id="sec0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Discussion</span><p id="par0155" class="elsevierStylePara elsevierViewall">The skin microbiome is a complex microbiological system with multiple interactions that can lead to both local and distant changes in homeostasis. Imbalances can trigger disease processes such as immune cell dysfunction and can also lead to functional changes, such as in hair follicles. Therefore, the system may be associated with inflammatory processes, such as AA, or changes in the hair follicle cycle, as in AGA. Multiple changes in skin surface or scalp microbiota, whether bacterial or fungal, have been described in both AA and AGA. However, the meaning of the associations remains uncertain, and the issue is complicated by our poor understanding of the follicular microbiome. The microbiology of the hair follicle must be better profiled so that we can learn more about its possible role in pathogenesis. The field of research is still fairly wide, and the possible therapeutic applications are many.</p><p id="par0160" class="elsevierStylePara elsevierViewall">In the profiles described above, the importance of changes in both the genera and species of bacterial populations associated with AA must be emphasized. Also important are cases in which disease has regressed after the use of postbiotics or bacterial therapies in association with conventional therapies such as platelet-rich plasma. Other common therapies can also be considered: corticosteroids can change the proportional distribution of microbes and also play an immunomodulatory role, leading to questions about the mechanism by which they act as either modulators or triggers of disease. Cases in which improvement has followed fecal transplantation have been reported, introducing another possible therapeutic target: gut microbiota. However, so far, studies have involved few patients and must be replicated in larger trials before efficacy and possible adverse effects can be evaluated. Finally, the literature in this novel area focusing on the role of the microbiome is scarce in certain diseases. Currently, more is known about the microbiome’s role in inflammatory diseases such as atopic dermatitis and psoriasis. We therefore emphasize that this line of of research holds promise for finding novel therapeutic targets in the gut or cutaneous microbiomes. Possibilities include local, systemic, and diet therapies as well as the use of live organisms such as those found in probiotics (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>).</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Conflicts of Interest</span><p id="par0165" class="elsevierStylePara elsevierViewall">The authors declare that they have no conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:10 [ 0 => array:3 [ "identificador" => "xres1519010" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1377511" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1519009" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1377512" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Methods" ] 6 => array:3 [ "identificador" => "sec0015" "titulo" => "Results" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0020" "titulo" => "Normal Microbiome of the Skin and Hair Follicles" ] 1 => array:3 [ "identificador" => "sec0025" "titulo" => "Dysbiosis and Disease" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0030" "titulo" => "Alopecia Areata" ] 1 => array:2 [ "identificador" => "sec0035" "titulo" => "Androgenetic Alopecia" ] 2 => array:2 [ "identificador" => "sec0040" "titulo" => "Scarring Alopecia" ] ] ] 2 => array:3 [ "identificador" => "sec0045" "titulo" => "Advances in Therapy" "secciones" => array:3 [ 0 => array:2 [ "identificador" => "sec0050" "titulo" => "Fecal Transplantation" ] 1 => array:2 [ "identificador" => "sec0055" "titulo" => "Use of Postbiotics" ] 2 => array:2 [ "identificador" => "sec0060" "titulo" => "Other Possible Future Treatments" ] ] ] ] ] 7 => array:2 [ "identificador" => "sec0065" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0070" "titulo" => "Conflicts of Interest" ] 9 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2020-09-28" "fechaAceptado" => "2020-12-21" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1377511" "palabras" => array:4 [ 0 => "Alopecia" 1 => "Dysbiosis" 2 => "Microbiota" 3 => "Alopecia areata" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1377512" "palabras" => array:4 [ 0 => "Alopecia" 1 => "Disbiosis" 2 => "Microbiota" 3 => "Alopecia areata" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">The human microbiome includes viruses, bacteria, and fungi. There is evidence that in addition to microbiome variation in different areas of the body or according to ethnicity and sex, the microbiome specific to the scalp is conditioned by such factors as humidity, protection from UV light, and pH. Although little information has yet been published about the microbiome of hair follicles and its role in the pathogenesis of diseases, interest in this area of research is emerging. Studies have shown that components of the follicular microbiome influence such disorders as androgenetic alopecia and alopecia areata. A current hypothesis is that interventions that target the microbiome may lead to innovative therapies for many diseases.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">El microbioma incluye microorganismos como virus, bacterias y hongos. Se ha evidenciado que el cuero cabelludo tiene su propio microbioma dado por factores únicos como humedad, protección de luz ultravioleta y pH, adicionalmente existen diferencias entre distintas áreas corporales, etnias y sexos. Existen pocas publicaciones o datos sobre el microbioma folicular y se ha denotado el rol de la microbiota en la patogénesis de varias enfermedades siendo un área de investigación emergente. Algunos estudios demuestran la influencia de esta composición con enfermedades capilares como la alopecia areata y alopecia androgenética. Finalmente se ha postulado que la manipulación del microbioma puede representar una opción terapéutica innovadora para muchas enfermedades.</p></span>" ] ] "NotaPie" => array:3 [ 0 => array:3 [ "etiqueta" => "*" "nota" => "<p class="elsevierStyleNotepara" id="npar0010">Translator’s note: <span class="elsevierStyleItalic">Cutibacterium acnes</span> is the name by which <span class="elsevierStyleItalic">Propionibacterium acnes</span> is known in the current nomenclature. The authors use both names in the article. For the sake of preserving consistency between this translation and the original Spanish version, the translation follows the authors’ usage.</p>" "identificador" => "fn0005" ] 1 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Barquero-Orias D, Muñoz Moreno-Arrones O, Vañó-Galván S. Alopecia y microbioma: ¿futura diana terapéutica? Actas Dermosifiliogr. 2021;112:495–502.</p>" ] 2 => array:3 [ "etiqueta" => "†" "nota" => "<p class="elsevierStyleNotepara" id="npar0015">Translator’s note: The former phylum Zygomycota is currently divided into 2 phyla (Mucoromycota and Zoopagomycota). This translation follows the authors’ use of nomenclature.</p>" "identificador" => "fn0010" ] ] "multimedia" => array:4 [ 0 => array:8 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1699 "Ancho" => 1500 "Tamanyo" => 98161 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Article selection process.</p>" ] ] 1 => array:8 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1400 "Ancho" => 2508 "Tamanyo" => 194047 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Distribution of bacterial colonization of the scalps of patients with AA and controls. AA refers to alopecia areata. Data source: Pinto et al.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a></p>" ] ] 2 => array:8 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1579 "Ancho" => 2925 "Tamanyo" => 240148 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0015" "detalle" => "Figure " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Distribution of fungal colonization of the scalps of patients with AGA and controls. AGA refers to androgenetic alopecia. Data source: Huang et al.<a class="elsevierStyleCrossRef" href="#bib0060"><span class="elsevierStyleSup">12</span></a></p>" ] ] 3 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0020" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:2 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Concepts in Publications \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Relevant References \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Current Knowledge</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " rowspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Effects of diet on the microbiome</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Borde et al, 2018 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Polak-Witka et al, 2019 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " rowspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fecal transplantation</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Rebello et al, 2017 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Xie et al, 2019 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Microbiotic profile under finasteride treatment \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Diviccaro et al, 2018 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " rowspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mammalian G protein-coupled receptors 43/41 as therapeutic targets</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Maslowski et al, 2009 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Borde et al, 2018 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " rowspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Polyphenols and terpenes</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Shin et al, 2016 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Filaire et al, 2020 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Use of <span class="elsevierStyleItalic">Lindera strychnifolia</span> extract in androgenetic alopecia \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Filaire et al, 2020 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Biomarkers in alopecia areata \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Moreno-Arrones et al, 2019 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " rowspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Use of antimicrobial therapy in androgenetic alopecia</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mahe et al, 2000 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Polak-Witka et al, 2019 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " rowspan="4" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Composition of the microbiota in androgenetic alopecia</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mahe et al, 2000 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Ho et al, 2019 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Huang et al, 2019 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Lousada et al, 2020 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " rowspan="9" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Composition of the microbiota in alopecia areata</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Skinner et al, 1995 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Offidani et al, 2000 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Rudnicka et al, 2012 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Hisham Diab Gaber et al, 2015 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mohan et al, 2015 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Geoghegan et al, 2018 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Borde et al, 2018 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Pinto et al, 2019 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Lousada et al, 2020 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Role of <span class="elsevierStyleItalic">Lactobacillus</span> species in hair follicle inflammation \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Ark et al, 2010 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " rowspan="3" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Helicobacter pylori</span> in alopecia areata</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Tosti et al, 1997 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Campuzano et al, 2011 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Simakou et al, 2018 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Use de postbiotics en alopecia areata \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Rinaldi et al, 2020 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " rowspan="4" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Probiotics and short-chain fatty acids</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Smith et al, 2013 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Arpaia et al, 2013 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Furusawa et al, 2013 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Borde et al, 2018 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2608362.png" ] ] 1 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="center" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">Lines of Future Research \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Randomized controlled trials of recently discovered treatments \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Role of diet modifications: their effects on the composition of microbiota and their therapeutic uses \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Better descriptions of changes in the microbiome and their pathogenic roles \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Research on possible therapeutic uses of probiotics and postbiotics \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Adverse effects of experimental treatments \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Research on the effects of conventional treatments and how they change the microbiota \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Uses of biomarkers and precision medicine \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular and cellular therapeutic targets \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Role of the gut microbiome and its implications \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Use of fecal transplantation as an alternative therapy \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Cost-effectiveness comparisons between new therapies and current ones \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2608361.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Current Knowledge and Lines of Research for the Future</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:19 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Exploring the human hair follicle microbiome" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Lousada" 1 => "T. Lachnit" 2 => "J. Edelkamp" 3 => "T. Rouillé" 4 => "D. Ajdic" 5 => "Y. Uchida" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/BJD.19461" "Revista" => array:2 [ "tituloSerie" => "Br J Dermatol." "fecha" => "2020" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "What’s new in the pathophysiology of alopecia areata? The possible contribution of skin and gut microbiome in the pathogenesis of alopecia—big opportunities, big challenges, and novel perspectives" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "K. Migacz-Gruszka" 1 => "W. Branicki" 2 => "A. Obtulowicz" 3 => "M. Pirowska" 4 => "K. Gruszka" 5 => "A. Wojas-Pelc" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4103/ijt.ijt_76_19" "Revista" => array:5 [ "tituloSerie" => "Int J Trichol." "fecha" => "2019" "volumen" => "11" "paginaInicial" => "185" "itemHostRev" => array:3 [ "pii" => "S0954611111003325" "estado" => "S300" "issn" => "09546111" ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A “hair‐raising” history of alopecia areata" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "D. Broadley" 1 => "K. McElwee" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/exd.14073" "Revista" => array:6 [ "tituloSerie" => "Exp Dermatol." "fecha" => "2020" "volumen" => "29" "paginaInicial" => "208" "paginaFinal" => "222" "itemHostRev" => array:3 [ "pii" => "S0091674913017107" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Functional heterogeneity of gut-resident regulatory T cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Luu" 1 => "U. Steinhoff" 2 => "A. Visekruna" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/cti.2017.39" "Revista" => array:4 [ "tituloSerie" => "Clin Trans Immunol." "fecha" => "2017" "volumen" => "6" "paginaInicial" => "e156" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Alopecia areata" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "C. Pratt" 1 => "L. King" 2 => "A. Messenger" 3 => "A. Christiano" 4 => "J. Sundberg" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrdp.2017.11" "Revista" => array:5 [ "tituloSerie" => "Nat Rev Dis Primers." "fecha" => "2017" "volumen" => "3" "paginaInicial" => "17011" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28300084" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Scalp bacterial shift in Alopecia areata" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "D. Pinto" 1 => "E. Sorbellini" 2 => "B. Marzani" 3 => "M. Rucco" 4 => "G. Giuliani" 5 => "F. Rinaldi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0215206" "Revista" => array:4 [ "tituloSerie" => "PLOS ONE." "fecha" => "2019" "volumen" => "14" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31891643" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The role of the microbiome in scalp hair follicle biology and disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "K. Polak-Witka" 1 => "L. Rudnicka" 2 => "U. Blume-Peytavi" 3 => "A. Vogt" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/exd.13935" "Revista" => array:6 [ "tituloSerie" => "Exp Dermatol." "fecha" => "2019" "volumen" => "29" "paginaInicial" => "286" "paginaFinal" => "294" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30974503" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Androgenetic alopecia: microbiota landscape and role of Lindera strychnifolia roots extract as a natural solution for hair loss" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "E. Filaire" 1 => "A. Dreux" 2 => "C. Boutot" 3 => "F. Volat" 4 => "E. Ranouille" 5 => "J. Demangeon" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Sofw J." "fecha" => "2020" "volumen" => "5" "paginaInicial" => "16" "paginaFinal" => "22" ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Alopecia areata: a multifactorial autoimmune condition" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "T. Simakou" 1 => "J. Butcher" 2 => "S. Reid" 3 => "F. Henriquez" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jaut.2018.12.001" "Revista" => array:5 [ "tituloSerie" => "J Autoimmun." "fecha" => "2019" "volumen" => "98" "paginaInicial" => "74" "paginaFinal" => "85" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Analysis of the gut microbiota in alopecia areata: identification of bacterial biomarkers" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "O. Moreno-Arrones" 1 => "S. Serrano-Villar" 2 => "V. Perez-Brocal" 3 => "D. Saceda-Corralo" 4 => "C. Morales-Raya" 5 => "R. Rodrigues-Barata" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/jdv.15885" "Revista" => array:6 [ "tituloSerie" => "J Eur Acad Dermatol Venereol." "fecha" => "2019" "volumen" => "34" "paginaInicial" => "400" "paginaFinal" => "405" "itemHostRev" => array:3 [ "pii" => "S0091674918310534" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Alopecia areata and the gut—the link opens up for novel therapeutic interventions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Borde" 1 => "A. Åstrand" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1080/14728222.2018.1481504" "Revista" => array:5 [ "tituloSerie" => "Expert Opin Ther Targets." "fecha" => "2018" "volumen" => "22" "paginaInicial" => "503" "paginaFinal" => "511" ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Investigation on microecology of hair root fungi in androgenetic alopecia patients" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J. Huang" 1 => "Y. Ran" 2 => "S. Pradhan" 3 => "W. Yan" 4 => "Y. Dai" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s11046-019-00345-8(01234" "Revista" => array:6 [ "tituloSerie" => "Mycopathologia." "fecha" => "2019" "volumen" => "184" "paginaInicial" => "505" "paginaFinal" => "515" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31240449" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Folliculitis decalvans is characterized by a persistent, abnormal subepidermal microbiota" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "B. Matard" 1 => "J. Donay" 2 => "M. Resche‐Rigon" 3 => "A. Tristan" 4 => "D. Farhi" 5 => "C. Rousseau" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/exd.13916" "Revista" => array:7 [ "tituloSerie" => "Exp Dermatol." "fecha" => "2019" "volumen" => "29" "paginaInicial" => "295" "paginaFinal" => "298" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30907453" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S009167491830616X" "estado" => "S300" "issn" => "00916749" ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Folliculitis decalvans and lichen planopilaris phenotypic spectrum: a case series of biphasic clinical presentation and theories on pathogenesis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "L. Yip" 1 => "T. Barrett" 2 => "M. Harries" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ced.13989" "Revista" => array:7 [ "tituloSerie" => "Clin Exp Dermatol." "fecha" => "2019" "volumen" => "45" "paginaInicial" => "63" "paginaFinal" => "72" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31017678" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0140673618313631" "estado" => "S300" "issn" => "01406736" ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Folliculitis decalvans microbiological signature is specific for disease clinical phenotype" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "O. Moreno-Arrones" 1 => "R. Campo" 2 => "D. Saceda-Corralo" 3 => "J. Jimenez-Cauhe" 4 => "M. Ponce-Alonso" 5 => "S. Serrano-Villar" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jaad.2020.10.073" "Revista" => array:2 [ "tituloSerie" => "J Am Acad Dermatol." "fecha" => "2020" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hair growth in two alopecia patients after fecal microbiota transplant" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "D. Rebello" 1 => "E. Wang" 2 => "E. Yen" 3 => "P. Lio" 4 => "C. Kelly" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.14309/crj.2017.107" "Revista" => array:5 [ "tituloSerie" => "ACG Case Rep J." "fecha" => "2017" "volumen" => "4" "paginaInicial" => "e107" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28932754" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hair regrowth following fecal microbiota transplantation in an elderly patient with alopecia areata: a case report and review of the literature" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "W. Xie" 1 => "X. Yang" 2 => "H. Xia" 3 => "L. Wu" 4 => "X. He" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.12998/wjcc.v7.i19.3074" "Revista" => array:6 [ "tituloSerie" => "World J Clin Cases." "fecha" => "2019" "volumen" => "7" "paginaInicial" => "3074" "paginaFinal" => "3081" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31624757" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Efficacy of postbiotics in a PRP-like cosmetic product for the treatment of alopecia area Celsi: a randomized double-blinded parallel-group study" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "F. Rinaldi" 1 => "A. Trink" 2 => "D. Pinto" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s13555-020-00369-9" "Revista" => array:6 [ "tituloSerie" => "Dermatol Ther." "fecha" => "2020" "volumen" => "10" "paginaInicial" => "483" "paginaFinal" => "493" "itemHostRev" => array:3 [ "pii" => "S0022202X19335006" "estado" => "S300" "issn" => "0022202X" ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Treatment of male rats with finasteride, an inhibitor of 5alpha-reductase enzyme, induces long-lasting effects on depressive-like behavior, hippocampal neurogenesis, neuroinflammation and gut microbiota composition" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Diviccaro" 1 => "S. Giatti" 2 => "F. Borgo" 3 => "M. Barcella" 4 => "E. Borghi" 5 => "J. Trejo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.psyneuen.2018.09.021" "Revista" => array:5 [ "tituloSerie" => "Psychoneuroendocrinology." "fecha" => "2019" "volumen" => "99" "paginaInicial" => "206" "paginaFinal" => "215" ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/15782190/0000011200000006/v1_202106020933/S1578219021001487/v1_202106020933/en/main.assets" "Apartado" => array:4 [ "identificador" => "6177" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Reviews" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/15782190/0000011200000006/v1_202106020933/S1578219021001487/v1_202106020933/en/main.pdf?idApp=UINPBA000044&text.app=https://actasdermo.org/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219021001487?idApp=UINPBA000044" ]
año/Mes | Html | Total | |
---|---|---|---|
2024 Noviembre | 5 | 4 | 9 |
2024 Octubre | 124 | 75 | 199 |
2024 Septiembre | 157 | 51 | 208 |
2024 Agosto | 175 | 89 | 264 |
2024 Julio | 211 | 46 | 257 |
2024 Junio | 223 | 64 | 287 |
2024 Mayo | 195 | 56 | 251 |
2024 Abril | 174 | 40 | 214 |
2024 Marzo | 154 | 66 | 220 |
2024 Febrero | 157 | 43 | 200 |
2024 Enero | 227 | 47 | 274 |
2023 Diciembre | 165 | 38 | 203 |
2023 Noviembre | 153 | 44 | 197 |
2023 Octubre | 218 | 44 | 262 |
2023 Septiembre | 129 | 33 | 162 |
2023 Agosto | 137 | 22 | 159 |
2023 Julio | 165 | 58 | 223 |
2023 Junio | 157 | 57 | 214 |
2023 Mayo | 193 | 51 | 244 |
2023 Abril | 191 | 38 | 229 |
2023 Marzo | 230 | 49 | 279 |
2023 Febrero | 1170 | 38 | 1208 |
2023 Enero | 127 | 35 | 162 |
2022 Diciembre | 100 | 63 | 163 |
2022 Noviembre | 67 | 57 | 124 |
2022 Octubre | 63 | 47 | 110 |
2022 Septiembre | 59 | 57 | 116 |
2022 Agosto | 63 | 51 | 114 |
2022 Julio | 40 | 40 | 80 |
2022 Junio | 39 | 36 | 75 |
2022 Mayo | 269 | 79 | 348 |
2022 Abril | 257 | 75 | 332 |
2022 Marzo | 414 | 103 | 517 |
2022 Febrero | 345 | 60 | 405 |
2022 Enero | 340 | 79 | 419 |
2021 Diciembre | 303 | 81 | 384 |
2021 Noviembre | 328 | 91 | 419 |
2021 Octubre | 303 | 109 | 412 |
2021 Septiembre | 297 | 176 | 473 |
2021 Agosto | 359 | 103 | 462 |
2021 Julio | 323 | 111 | 434 |
2021 Junio | 570 | 185 | 755 |
2021 Mayo | 617 | 86 | 703 |
2021 Abril | 1125 | 262 | 1387 |
2021 Marzo | 80 | 61 | 141 |