se ha leído el artículo
array:25 [ "pii" => "S0001731022004768" "issn" => "00017310" "doi" => "10.1016/j.ad.2022.06.002" "estado" => "S300" "fechaPublicacion" => "2022-07-01" "aid" => "3079" "copyright" => "AEDV" "copyrightAnyo" => "2022" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "rev" "cita" => "Actas Dermosifiliogr. 2022;113:T705-T711" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:19 [ "pii" => "S0001731022002575" "issn" => "00017310" "doi" => "10.1016/j.ad.2021.11.010" "estado" => "S300" "fechaPublicacion" => "2022-07-01" "aid" => "2988" "copyright" => "AEDV" "documento" => "simple-article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "crp" "cita" => "Actas Dermosifiliogr. 2022;113:712-6" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Comunicación breve</span>" "titulo" => "La unión de <span class="elsevierStyleItalic">Candida albicans</span> y <span class="elsevierStyleItalic">Malassezia</span> spp. a células de piel promueve cambios de expresión en los genes responsables de la síntesis de las cadenas de heparán y condroitín sulfato" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "712" "paginaFinal" => "716" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Adherence of <span class="elsevierStyleItalic">Candida albicans</span> and <span class="elsevierStyleItalic">Malassezia</span> Species to Skin Cells Induces Changes in the Expression of Genes Responsible for Heparan and Chondroitin Sulfate Chain Synthesis" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figura 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 2401 "Ancho" => 2500 "Tamanyo" => 218836 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Transcripción diferencial de los genes implicados en la elongación de las cadenas de HS y CS en queratinocitos de epidermis y fibroblastos de la dermis tras la interacción con levaduras. Se representa la abundancia relativa de los transcritos de genes implicados en la polimerización de las cadenas de HS (<span class="elsevierStyleItalic">EXT1</span> y <span class="elsevierStyleItalic">EXT2</span>) y de las cadenas de CS (<span class="elsevierStyleItalic">CHSY1</span>, <span class="elsevierStyleItalic">CHSY3</span> y <span class="elsevierStyleItalic">CHPF</span>), en ausencia de levaduras (barras negras), en presencia de <span class="elsevierStyleItalic">C.</span><span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">albicans</span> (barras gris oscuro), en presencia de la forma filamentada de <span class="elsevierStyleItalic">C.</span><span class="elsevierStyleHsp" style=""></span><span class="elsevierStyleItalic">albicans</span> (barras gris claro) y en presencia de <span class="elsevierStyleItalic">Malassezia</span> spp. (barras blancas).</p> <p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Los resultados se expresan en escala logarítmica, y se indican las desviaciones estándar. Las diferencias significativas están representadas con * para p<span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0,05, ** para p<span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0,01 y *** para p<span class="elsevierStyleHsp" style=""></span><<span class="elsevierStyleHsp" style=""></span>0,001.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "H. Ordiales, F. Vázquez-López, M. Pevida, B. Vázquez-Losada, L.M. Quirós, C. Martín" "autores" => array:7 [ 0 => array:2 [ "nombre" => "H." "apellidos" => "Ordiales" ] 1 => array:2 [ "nombre" => "F." "apellidos" => "Vázquez-López" ] 2 => array:2 [ "nombre" => "M." "apellidos" => "Pevida" ] 3 => array:2 [ "nombre" => "B." "apellidos" => "Vázquez-Losada" ] 4 => array:2 [ "nombre" => "F." "apellidos" => "Vázquez" ] 5 => array:2 [ "nombre" => "L.M." "apellidos" => "Quirós" ] 6 => array:2 [ "nombre" => "C." "apellidos" => "Martín" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731022002575?idApp=UINPBA000044" "url" => "/00017310/0000011300000007/v1_202207140532/S0001731022002575/v1_202207140532/es/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S0001731022002034" "issn" => "00017310" "doi" => "10.1016/j.ad.2022.02.025" "estado" => "S300" "fechaPublicacion" => "2022-07-01" "aid" => "2978" "copyright" => "AEDV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "rev" "cita" => "Actas Dermosifiliogr. 2022;113:705-11" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">REVISIÓN</span>" "titulo" => "Factor nuclear eritroide similar al factor 2 en el vitíligo" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "705" "paginaFinal" => "711" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Nuclear Factor Erythroid 2-Related Factor 2 in Vitiligo" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figura 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1943 "Ancho" => 2500 "Tamanyo" => 283132 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Función del factor de transcripción Nrf2.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "V. Romano-Lozano, A. Cruz-Avelar, M.L. Peralta Pedrero" "autores" => array:3 [ 0 => array:2 [ "nombre" => "V." "apellidos" => "Romano-Lozano" ] 1 => array:2 [ "nombre" => "A." "apellidos" => "Cruz-Avelar" ] 2 => array:2 [ "nombre" => "M.L." "apellidos" => "Peralta Pedrero" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731022002034?idApp=UINPBA000044" "url" => "/00017310/0000011300000007/v1_202207140532/S0001731022002034/v1_202207140532/es/main.assets" ] "asociados" => array:1 [ 0 => array:19 [ "pii" => "S0001731022002034" "issn" => "00017310" "doi" => "10.1016/j.ad.2022.02.025" "estado" => "S300" "fechaPublicacion" => "2022-07-01" "aid" => "2978" "copyright" => "AEDV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "rev" "cita" => "Actas Dermosifiliogr. 2022;113:705-11" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">REVISIÓN</span>" "titulo" => "Factor nuclear eritroide similar al factor 2 en el vitíligo" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "705" "paginaFinal" => "711" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Nuclear Factor Erythroid 2-Related Factor 2 in Vitiligo" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figura 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1943 "Ancho" => 2500 "Tamanyo" => 283132 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Función del factor de transcripción Nrf2.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "V. Romano-Lozano, A. Cruz-Avelar, M.L. Peralta Pedrero" "autores" => array:3 [ 0 => array:2 [ "nombre" => "V." "apellidos" => "Romano-Lozano" ] 1 => array:2 [ "nombre" => "A." "apellidos" => "Cruz-Avelar" ] 2 => array:2 [ "nombre" => "M.L." "apellidos" => "Peralta Pedrero" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731022002034?idApp=UINPBA000044" "url" => "/00017310/0000011300000007/v1_202207140532/S0001731022002034/v1_202207140532/es/main.assets" ] ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review</span>" "titulo" => " Nuclear Factor Erythroid 2-Related Factor 2 in Vitiligo" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "T705" "paginaFinal" => "T711" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "V. Romano-Lozano, A. Cruz-Avelar, M.L. Peralta-Pedrero" "autores" => array:3 [ 0 => array:3 [ "nombre" => "V." "apellidos" => "Romano-Lozano" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "A." "apellidos" => "Cruz-Avelar" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 2 => array:4 [ "nombre" => "M.L." "apellidos" => "Peralta-Pedrero" "email" => array:1 [ 0 => "luisa.peraltap@gmail.com" ] "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:2 [ 0 => array:3 [ "entidad" => "Centro Dermatológico Dr. Ladislao de la Pascua, Ciudad de México, Mexico" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Universidad Nacional Autónoma de México, Ciudad de México, Mexico" "etiqueta" => "b" "identificador" => "aff0010" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Factor nuclear eritroide similar al factor 2 en el vitíligo" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1952 "Ancho" => 2508 "Tamanyo" => 296063 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Function the transcription factor Nrf2.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Vitiligo is a multifactorial skin disorder, characterized by white spots of variable appearance and course, caused by loss of melanocyte function. It affects approximately 1% of the world population. The exact etiology of the condition is not fully known, but there is evidence that oxidative stress triggers the lesion in pigment-producing cells of the skin, thereby compromising their survival and function. Reactive oxygen species (ROS) can impact melanocyte metabolism, proliferation, and differentiation, leading to an immune response and generation of a proinflammatory environment conducive to tissue damage.<a class="elsevierStyleCrossRefs" href="#bib0145"><span class="elsevierStyleSup">1,2</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">The capacity of melanocytes to adapt to their environment and the presence of antioxidant and oxidant molecules to maintain the equilibrium in the medium are essential requirements for cell survival. There are pathways dedicated to protecting melanocytes from cell damage, such as nuclear factor erythroid 2-related factor 2 (Nrf2), which is a potent cell redox regulator.<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">3</span></a></p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Pathogenesis of vitiligo</span><p id="par0015" class="elsevierStylePara elsevierViewall">Four theories have been proposed to explain the pathogenesis of vitiligo based on genetics, immunology, oxidative stress, and generation of inflammatory mediators. None of these theories alone is sufficient to explain the origin of vitiligo, although currently its autoimmune nature and multifactorial etiology are recognized.<a class="elsevierStyleCrossRefs" href="#bib0160"><span class="elsevierStyleSup">4,5</span></a> Twenty percent of patients with vitiligo have at least one first-degree relative also affected. A relative risk of presenting vitiligo in first-degree relatives is 7 to 10 times greater than in the overall population. Identical twins have a concordance rate of 23%, indicating that environmental factors are essential for the condition to develop. Around 50 different genetic loci have been associated with innate and adaptive immune regulation, melanogenesis, and cell apoptosis, and these are risk factors for developing vitiligo. An example is the <span class="elsevierStyleItalic">TYR</span> gene, which encodes a tyrosine that acts as an autoantigen in these patients. Another example is the <span class="elsevierStyleItalic">NALP1</span> gene, which encodes the NACHT leucine-rich-repeat protein 1.<a class="elsevierStyleCrossRef" href="#bib0160"><span class="elsevierStyleSup">4</span></a> This protein is a regulator of innate immune response and has also been associated with the development of vitiligo and other diseases and autoimmune syndromes.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Vitiligo and oxidative stress</span><p id="par0020" class="elsevierStylePara elsevierViewall">Oxidative stress has been proposed as a possible trigger event for melanocyte destruction. The antioxidant system in melanocytes of patients with vitiligo is out of equilibrium, with high levels of markers of oxidative stress and significant depletion of antioxidant mechanisms<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">6</span></a>; this situation has been associated with a greater intrinsic sensitivity of melanocytes to external pro-oxidative stimuli. In addition, at the edges of the spots and in uninvolved skin of patients with vitiligo, a decreased adhesion between melanocytes and keratinocytes has been detected. This has been associated with the Koeber phenomenon. The mitochondria of patients with vitiligo appear to play a key role in oxidative stress, as they have abnormalities in transmembrane potential and in calcium channels in the cell membrane, in turn triggering cell apoptosis and oxidation. It has also been reported that the endoplasmic reticulum of melanocytes in these patients is dilated and houses certain molecules, such as calreticulin, which is expressed in states of oxidative stress. Overproduction of ROS stimulates the melanocytes to secrete exosomes with melanocyte-specific antigens. These antigens are presented to the dendritic cells, which activate T helper cells and cause regulatory T-cell dysfunction. The CD8 T cells in vitiligo lesions produce cytokines such as IFN-γ, which activate pathways such as JAK-STAT and ultimately lead to secretion of multiple proinflammatory cytokines.<a class="elsevierStyleCrossRef" href="#bib0160"><span class="elsevierStyleSup">4</span></a></p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Definition and structure of nuclear factor erythroid 2-related factor 2</span><p id="par0025" class="elsevierStylePara elsevierViewall">Nrf2 is a transcription factor belonging to the cap’n’collar family. The gene that encodes this transcription factor is located on chromosome 2q31 and consists of 5 exons and 4 introns.<a class="elsevierStyleCrossRefs" href="#bib0145"><span class="elsevierStyleSup">1,7</span></a></p><p id="par0030" class="elsevierStylePara elsevierViewall">The Nrf2 transcription factor is formed of 5 domains denominated <span class="elsevierStyleItalic">Neh</span> and a leucine zip domain (bZIP). These domains have specific functions and also include motifs of amino acids and lysine residues. Of the named domains, Neh2 is considered the principle one, as it is essential for activation or inhibition of this transcription factor (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>).<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">3</span></a></p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Function of nuclear factor erythroid 2-related factor 2</span><p id="par0035" class="elsevierStylePara elsevierViewall">Under homeostatic conditions, Nrf2 activity is constantly inhibited by binding to a cytoplasmic protein known as Kelch-like ECH-associated protein 1 (KEAP1), which is an adaptive subunit of E3 ubiquitin ligase whose function is to add chains of ubiquitin to Nrf2 as a marker for degradation by the proteosome. The half-life of Nrf2 in normal conditions is 20<span class="elsevierStyleHsp" style=""></span>min; however, under oxidative stress, oxidants bind to Keap1 cysteine sensors triggering a confirmational change to allow Nrf2 to dissociate from the inhibitory protein; Nrf2 is consequently stabilized and translocates to the nucleus.<a class="elsevierStyleCrossRef" href="#bib0180"><span class="elsevierStyleSup">8</span></a> Once in the cell nucleus, it forms a complex by heterodimerization with musculoaponeurotic fibrosarcoma proteins. These heterodimers recognize antioxidant response elements (ARE) located in the DNA promotor region of the genes, which encode phase <span class="elsevierStyleSmallCaps">ii</span> antioxidant enzymes, such as heme oxygenase 1, superoxide dismutase, quinone oxidoreductase 1, NADH, the catalytic subunit of cysteine ligase glutamate, and the modulator subunit of glutamyl cysteine ligase, as well as nonenzymatic antioxidant proteins, such as thioredoxin or ferritin; these molecules act by neutralizing ROS through elimination and reduction reactions (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a> and <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>).<a class="elsevierStyleCrossRefs" href="#bib0180"><span class="elsevierStyleSup">8–10</span></a></p><elsevierMultimedia ident="fig0010"></elsevierMultimedia><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0040" class="elsevierStylePara elsevierViewall">Some other proteins, such as those that participate in the mitogen-activated kinase pathways, for example ERK, JNK, p62, and phosphatidylinositol 3-kinase, are important regulators of Nrf2 prior to its activation or degradation as they participate in the dissociation of Nrf2 from Keap1 and its subsequent nuclear translocation.<a class="elsevierStyleCrossRefs" href="#bib0180"><span class="elsevierStyleSup">8,11</span></a></p><p id="par0045" class="elsevierStylePara elsevierViewall">Other additional mechanisms of action for Nrf2 activation are histone acetylation/deacetylation, Bach1 phosphorylation, and participation of the cell autophagy marker.<a class="elsevierStyleCrossRefs" href="#bib0200"><span class="elsevierStyleSup">12,13</span></a></p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Nuclear factor erythroid 2-related factor 2 and vitiligo</span><p id="par0050" class="elsevierStylePara elsevierViewall">Nrf2 transcription factor is localized mainly in the cytoplasm of melanocytes in patients. In contrast, in healthy controls, the greater proportion of Nrf2 is located in the nucleus; in addition, Nrf2 levels in healthy controls exposed to hydrogen peroxide are higher compared with patients. This suggests that nuclear translocation of Nrf2 in response to oxidative stress is relatively reduced in patients with vitiligo, leading to a disequilibrium in the redox system.<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">14</span></a> Therefore, methods have been investigated to increase Nrf2 activation. Recent studies have identified glycogen kinase 3 beta synthase as a new regulator of Nrf2. This agent acts by promoting accumulation of the transcription factor in the nucleus through phosphorylation.<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">13</span></a> Another study conducted in Asian patients demonstrated that inhibition of the high mobility group 1 protein, a molecule released by immune system cells in the face of oxidative stress and that in normal conditions acts as a proinflammatory mediator, significantly increases expression of Nrf2.<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">13</span></a></p><p id="par0055" class="elsevierStylePara elsevierViewall">In addition to the classic antioxidant system, the cell autophagy mechanism can protect melanocytes from oxidative stress. This mechanism consists of grouping the intracellular organelles and proteins in autophagosomes to be degraded; it is controlled by the Nrf2-p62 pathway and is downregulated in patients with vitiligo.<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">15</span></a></p><p id="par0060" class="elsevierStylePara elsevierViewall">Altered Nrf2 function has not only been observed in pigment producing cells but also in keratinocytes of patients with vitiligo, where an increase in cell apoptosis and impaired cell viability have been observed. Kim et al.<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">16</span></a> therefore investigated stimulation of protease activated receptor 2 in keratinocytes of 8 patients with stable nonsegmental vitiligo. The authors reported that this receptor can be activated and stabilize Nrf2 through accelerated degradation of Keap1, thereby allowing subsequent induction of phase <span class="elsevierStyleSmallCaps">ii</span> enzymes; moreover, the study found that expression of protease-activated receptor 2 and Nrf2 was lower in lesioned skin compared with lesion-free skin in the same patient with vitiligo.</p><p id="par0065" class="elsevierStylePara elsevierViewall">In addition to abnormalities in transcription factor localization and function, polymorphisms have been detected in the <span class="elsevierStyleItalic">Nrf2</span> gene promoter region, such as T to C substitution at position 653, G to T substitution at position 617, and C to A substitution at position 650. These polymorphisms increase the risk of developing vitiligio.<a class="elsevierStyleCrossRefs" href="#bib0175"><span class="elsevierStyleSup">7,17</span></a></p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Molecules that act on nuclear factor erythroid 2-related factor 2 in patients with vitiligo</span><p id="par0070" class="elsevierStylePara elsevierViewall">Phenols such as monobenzyl ether of hydroquinone and 4-tertiaryl butylphenol are cytotoxic molecules that were found to increase nuclear translocation and activation of Nrf2 in melanocytes in the foreskins of neonates and 2 people with stable vitiligo.<a class="elsevierStyleCrossRef" href="#bib0175"><span class="elsevierStyleSup">7</span></a> In contrast, glycerin, which is a natural component of licorice rhizomes and roots, reduces oxidative stress through activation of Nrf2 and increased expression of hemooxygenase 1 in macrophages.<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">1</span></a> Berberine is a natural isoquinoline alkaloid with antioxidant activity that acts by activating the Nrf2-ARE pathway (<a class="elsevierStyleCrossRef" href="#tbl0010">Table 2</a>).<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">2</span></a></p><elsevierMultimedia ident="tbl0010"></elsevierMultimedia><p id="par0075" class="elsevierStylePara elsevierViewall">Metal nanoparticles such as those comprised of palladium have antioxidant catalytic activity, and so an emulsion of the 2 substances was developed by investigators in Japan. This product, used for the treatment of vitiligo and skin aging, acts by inducing Nrf2 translocation to the nucleus with upregulation of the Nrf2-NADH quinin oxidoreductase 1 pathway and, in a secondary action, by inducing production of superoxide dismutase 1.<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">18</span></a></p><p id="par0080" class="elsevierStylePara elsevierViewall">Other substances tested in human epidermal melanocytes from patients with vitiligo include flavonoids; an example is afzelin, which has been shown to significantly inhibit hydrogen-peroxide induced cell death, ROS production, and peroxidation of lipids in melanocytes, leading to deactivation of the glycogen synthase kinase 3 beta pathway and allowing greater activation of the Nrf2-ARE pathway.<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">19</span></a></p><p id="par0085" class="elsevierStylePara elsevierViewall">In 2004, a patient with vitiligo and hypercholesterolemia was reported to experience rapid repigmentation of the skin after receiving high doses of simvastatin. Recently, a randomized clinical trial conducted with oral simvastatin in patients with nonsegmental vitiligo who had not benefitted from prior treatment did not demonstrate any clinical benefit. In contrast, in vitro studies have shown that simvastatin can be a useful molecule for activating the cell autophagy mechanism, improving cell viability, and enhancing the activity of antioxidant enzymes.<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">20</span></a> It is likely that the discrepancy between in vivo and in vitro studies are the result of the limited dosing of simvastatin in humans due to the risk of complications such as rhabdomyolysis. Another study found that atorvastatin along with UVB phototherapy can be useful for reducing lesion propagation in patients with active vitiligo. The study outcomes were dose-dependent.<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">21</span></a></p><p id="par0090" class="elsevierStylePara elsevierViewall">Some phytochemicals such as cinnamaldehyde extract have been reported as stimulators of Nrf2 translocation and upregulators of hemooxygenase 1 expression in HaCaT cells, a keratinocyte cell line, through oxidative or covalent modification of the cytosolic repressor Keap1, or by Nrf2 phosphorylation.<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">9</span></a></p><p id="par0095" class="elsevierStylePara elsevierViewall">A more recent study assessed the effect of molecular hydrogen on the Nrf2-ARE pathway in cells under oxidative stress.<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">22</span></a> This molecule was found to be able to drastically regulate expression of cytosolic and nuclear Nrf2, as well as to promote translocation of Nrf2 to the nucleus and to increase expression of Nrf2 target genes. The authors concluded that molecular hydrogen can act as an antioxidant in melanocytes by promoting activation of the Nrf2-ARE pathway.</p><p id="par0100" class="elsevierStylePara elsevierViewall">Currently, new herb extracts with apparent antioxidant activity are under study. For example, 6-shogaol, an active component of ginger, has been shown to be useful for protecting melanocytes from oxidative stress caused by hydrogen peroxide through activation of the Nrf2 pathway and increased expression of this pathway.<a class="elsevierStyleCrossRef" href="#bib0255"><span class="elsevierStyleSup">23</span></a> Another plant derivative is paeoniflorin, which is a chemical compound derived from the plant <span class="elsevierStyleItalic">Paeonia lactiflora.</span> This compound seems to be able to reduce cell apoptosis, improve cell viability, and activate the Nrf2 factor pathway, among other functions.<a class="elsevierStyleCrossRef" href="#bib0260"><span class="elsevierStyleSup">24</span></a> Apigenin, an aglycone of plant origin, has also been studied as a regulator of oxidative stress.<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">25</span></a> Recently, folic acid has been reported as an effective activator of the Nrf2 pathway.<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">26</span></a></p><p id="par0105" class="elsevierStylePara elsevierViewall">Other compounds that could activate Nrf2 include plant sterols, carbonitriles, dietary supplements that contain ellagic acid or <span class="elsevierStyleItalic">Ginkgo biloba</span>, treatment with iodine solution, and certain drugs such as ketoconazole.<a class="elsevierStyleCrossRefs" href="#bib0185"><span class="elsevierStyleSup">9,12,27</span></a></p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Conclusions</span><p id="par0110" class="elsevierStylePara elsevierViewall">Nrf2 is essential for maintaining cell redox by promoting phase <span class="elsevierStyleSmallCaps">ii</span> antioxidant enzymes. Several variations in cell localization, structure, and function have been reported for this transcription factor, which may be closely linked to onset of diseases such as vitiligo. It is important to investigate its function and how this transcription factor can be stimulated, as such knowledge could lead to new therapeutic options for patients with vitiligo. Current evidence is not strong enough to establish recommendations; however, knowledge of this transcription factor may contribute to our understanding of the disease and point to potential future treatments.<a class="elsevierStyleCrossRef" href="#bib0280"><span class="elsevierStyleSup">28</span></a></p></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Conflicts of interest</span><p id="par0115" class="elsevierStylePara elsevierViewall">The authors declare that they have no conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:15 [ 0 => array:3 [ "identificador" => "xres1746834" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1539029" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1746833" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1539028" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Pathogenesis of vitiligo" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Vitiligo and oxidative stress" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "Definition and structure of nuclear factor erythroid 2-related factor 2" ] 8 => array:2 [ "identificador" => "sec0025" "titulo" => "Function of nuclear factor erythroid 2-related factor 2" ] 9 => array:2 [ "identificador" => "sec0030" "titulo" => "Nuclear factor erythroid 2-related factor 2 and vitiligo" ] 10 => array:2 [ "identificador" => "sec0035" "titulo" => "Molecules that act on nuclear factor erythroid 2-related factor 2 in patients with vitiligo" ] 11 => array:2 [ "identificador" => "sec0040" "titulo" => "Conclusions" ] 12 => array:2 [ "identificador" => "sec0045" "titulo" => "Conflicts of interest" ] 13 => array:2 [ "identificador" => "xack616862" "titulo" => "Acknowledgments" ] 14 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2021-03-02" "fechaAceptado" => "2022-02-22" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1539029" "palabras" => array:3 [ 0 => "Vitiligo" 1 => "Nrf2" 2 => "Antioxidant response" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1539028" "palabras" => array:3 [ 0 => "Vitíligo" 1 => "Nrf2" 2 => "Respuesta antioxidante" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Vitiligo is a pigmentary disorder, in which oxidative stress has been evidenced as part of the pathogenesis. Pathways responsible for protecting melanocytes from damage caused by reactive oxygen species are known as the nuclear factor erythroid factor 2 (Nrf2) pathway.</p><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Nrf2 is a transcription factor that remains inhibited when the organism is in homeostasis, but in the presence of oxidative stress it allows the encoding of phase <span class="elsevierStyleSmallCaps">ii</span> antioxidant enzymes.</p><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">In vitiligo there are abnormalities in the location and function of Nrf2 as well as polymorphisms that increase the risk of this disease. Currently, multiple molecules that act on Nrf2 have been investigated in order to find useful emerging treatments for vitiligo.</p><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">A search for articles in Spanish and English was carried out in the PubMed, Ovid, Scopus and Web of Science Clarivate databases, using the keywords “Vitiligo AND nuclear factor erythroid derived 2 like 2 OR NRF2” without time restriction. All <span class="elsevierStyleItalic">in vitro</span> studies, narrative reviews, case series, cohort studies, and randomized and non-randomized clinical trials that specifically addressed the issue of Nrf2 associated with vitiligo were included.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">El vitíligo es un trastorno pigmentario en el que se ha evidenciado el estrés oxidativo como parte de la patogenia. Se conocen vías encargadas de proteger a los melanocitos del daño causado por las especies reactivas de oxígeno, como por ejemplo la vía del factor nuclear eritroide similar al factor 2 (Nrf2).</p><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">El Nrf2 es un factor de transcripción que cuando el organismo se encuentra en homeostasis permanece inhibido, pero en presencia de estrés oxidativo permite la codificación de enzimas antioxidantes de fase II.</p><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">En el vitíligo se evidencian anomalías en la localización y función del Nrf2, así como polimorfismos que aumentan el riesgo de esta enfermedad. Así mismo, se han investigado múltiples moléculas que actúan en el Nrf2 buscando encontrar tratamientos emergentes útiles para el vitíligo.</p><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Se realizó una búsqueda de artículos en español e inglés en las bases de datos PubMed, Ovid, Scopus y Web of Science Clarivate, utilizando las palabras clave «Vitiligo AND nuclear factor erythroid derived 2 like 2 OR NRF2» sin restricción de tiempo. Se incluyeron todos los estudios <span class="elsevierStyleItalic">in vitro</span>, revisiones narrativas, series de casos, estudios de cohorte y ensayos clínicos aleatorizados y no aleatorizados que abordaban específicamente el tema del Nrf2 asociado a vitíligo.</p></span>" ] ] "multimedia" => array:4 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 642 "Ancho" => 2508 "Tamanyo" => 143589 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Localization of the gene that encodes Nrf2 (chromosome 2q31) and the structure of the transcription protein.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1952 "Ancho" => 2508 "Tamanyo" => 296063 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Function the transcription factor Nrf2.</p>" ] ] 2 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Abbreviations: HMGB1, high-mobility group B1 protein; H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span>, hydrogen peroxide; LE/SR<span class="elsevierStyleBold">,</span> level of evidence and strength of recommendation based on the Oxford Centre for Evidence-Based Medicine scale; NA, not applicable, it meets one of the 11 Bradford Hill causality criteria (biological plausibility); Nrf2, nuclear factor erythroid 2-related factor 2; PAR-2, protease activated receptor 2.</p>" "tablatextoimagen" => array:1 [ 0 => array:1 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Author/year \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Country \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">LE/SR \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Type of study \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Contribution \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Königsberg Fainstein,<a class="elsevierStyleCrossRef" href="#bib0155"><span class="elsevierStyleSup">3</span></a> 2007 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mexico \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5/D \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Narrative review \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mechanism of Nrf2 regulation and activation \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Schallreuter et al.,<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">6</span></a> 1991 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Germany \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Oxidants in patients with vitiligo \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Song et al.,<a class="elsevierStyleCrossRef" href="#bib0175"><span class="elsevierStyleSup">7</span></a> 2016 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3b/B \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Case-control \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Polymorphism in the <span class="elsevierStyleItalic">Nrf2</span> gene that impacts susceptibility to vitiligo \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Gęgotek and Skrzydlewska,<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">9</span></a> 2015 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Poland \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5/D \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Narrative review \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Action of Nrf2 on cell metabolism \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mou et al.,<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">13</span></a> 2018 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Decreased Nrf2 expression due to increased HMGB1 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Jian et al.,<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">14</span></a> 2014 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4/C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Longitudinal \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Nrf2 cell expression and translocation in response to H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">He et al.,<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">15</span></a> 2017 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Deregulation of the Nrf2-p62 pathway in vitiligo melanocytes \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Kim et al.,<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">16</span></a> 2014 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Korea \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PAR-2 molecule and its action on increasing Nrf2 nuclear translocation \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Guan et al.,<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">17</span></a> 2008 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3b/B \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Case-control \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Polymorphism in the <span class="elsevierStyleItalic">Nrf2</span> gene that impacts susceptibility to vitiligo \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Description of studies contributing to knowledge of Nrf2 function.</p>" ] ] 3 => array:8 [ "identificador" => "tbl0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at2" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">Abbreviations: ARE, antioxidant response elements; HQ, hydroquinone; MBEH, monobenzyl ethyl hydroquinone; LE/SR, level of evidence and strength of recommendation according to the Centre for Evidence-Based Medicine de Oxford scale; NA, not applicable as it meets one of the 11 Bradford Hill causality criteria (biological plausibility in basic research); Nfr2, nuclear factor resembling erythroid factor 2; PAPLAL, palladium and platinum nanoparticle solution; 4-TBP: 4-tertiaryl butyl phenol.</p>" "tablatextoimagen" => array:1 [ 0 => array:1 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Author/year \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Country \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">LE/SR \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Type of study \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Contribution \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Mou et al.,<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">1</span></a> 2019 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Glycyrrhizin as a protector against oxidative stress in melanocytes through activation of the Nrf2 pathway \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Jiang et al.,<a class="elsevierStyleCrossRef" href="#bib0150"><span class="elsevierStyleSup">2</span></a> 2019 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Berberine as an inducer of Nrf2 nuclear translocation and total Nrf2 levels in blood \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Ma et al.,<a class="elsevierStyleCrossRef" href="#bib0180"><span class="elsevierStyleSup">8</span></a> 2018 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">What is baicalein and its upregulation in the Nrf2 signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Arowojolu et al.,<a class="elsevierStyleCrossRef" href="#bib0190"><span class="elsevierStyleSup">10</span></a> 2017 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">United States \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Action of 4-TBP and MBEH on Nrf2 (increase of Nrf2 following oxidative stress produced by 4-TBP and MBEH) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Kim et al.,<a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">11</span></a> 2017 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">South Korea \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4/C \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Longitudinal \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">4-TBP and HQ causing decrease in activation of the Nrf2 pathway \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Ben-Yehuda Greenwald et al.,<a class="elsevierStyleCrossRef" href="#bib0200"><span class="elsevierStyleSup">12</span></a> 2017 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Switzerland \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Iodine and iodide as activators of Nrf2 pathway \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Tsuji et al.,<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">18</span></a> 2017 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Japan \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">PAPLAL as an inducer of Nrf2 nuclear translocation \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Jung et al.,<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">19</span></a> 2017 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Korea \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Afzelin as an activator of the Nrf2-ARE signaling pathway in vitro \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Chang et al.,<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">20</span></a> 2017 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">High doses of simvastatin as an Nrf2 activator \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Vanderweil et al.,<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">21</span></a> 2017 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">United States \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1b/A \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Clinical trial \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Simvastatin for the treatment of vitiligo \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Fang et al.,<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">22</span></a> 2020 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular hydrogen as activator of the Nrf2-ARE signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Yang et al.,<a class="elsevierStyleCrossRef" href="#bib0255"><span class="elsevierStyleSup">23</span></a> 2020 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Ginger extract as an activator of the Nrf2 signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Yuan et al.,<a class="elsevierStyleCrossRef" href="#bib0260"><span class="elsevierStyleSup">24</span></a> 2020 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Derivative of the <span class="elsevierStyleItalic">Paeonia lactiflora</span> plant as an activator of the Nrf2 signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Zhang et al.,<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">25</span></a> 2020 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Extract of plant origin as an activator of the Nrf2 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Du et al.,<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">26</span></a> 2021 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Folic acid and its action on the Nrf2 signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Zhang et al.,<a class="elsevierStyleCrossRef" href="#bib0275"><span class="elsevierStyleSup">27</span></a> 2019 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">China \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Molecular biology study \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Ginkgo biloba</span> extract as an activator of the Nrf2-ARE signaling pathway \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Description of studies of effects of molecules on Nrf2 function.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:28 [ 0 => array:3 [ "identificador" => "bib0145" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Glycyrrhizin protects human melanocytes from H2O2-induced oxidative damage via the Nrf2-dependent induction of HO-1" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K. Mou" 1 => "W. Pan" 2 => "D. Han" 3 => "X. Wen" 4 => "F. Cao" 5 => "Y. Miao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/ijmm.2019.4200" "Revista" => array:5 [ "tituloSerie" => "Int J Mol Med" "fecha" => "2019" "volumen" => "44" "paginaInicial" => "253" "paginaFinal" => "261" ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0150" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Berberine protects immortalized line of human melanocytes from H2O2-induced oxidative stress via activation of Nrf2 and Mitf signaling pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "W. Jiang" 1 => "S. Li" 2 => "X. Chen" 3 => "W. Zhang" 4 => "Y. Chang" 5 => "Y. He" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jdermsci.2019.03.007" "Revista" => array:6 [ "tituloSerie" => "J Dermatol Sci" "fecha" => "2019" "volumen" => "94" "paginaInicial" => "236" "paginaFinal" => "243" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30987854" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0155" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Nrf2: la historia de un nuevo factor de transcripción que responde a estrés oxidativo" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M. Königsberg Fainstein" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "REB" "fecha" => "2007" "volumen" => "26" "paginaInicial" => "18" "paginaFinal" => "25" ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0160" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitiligo: a review" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C. Bergqvist" 1 => "K. Ezzedine" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1159/000506103" "Revista" => array:5 [ "tituloSerie" => "Dermatology" "fecha" => "2020" "volumen" => "236" "paginaInicial" => "571" "paginaFinal" => "592" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0165" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Vitiligo pathogenesis: autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else?" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K.U. Schallreuter" 1 => "P. Bahadoran" 2 => "M. Picardo" 3 => "A. Slominski" 4 => "Y.E. Elassiuty" 5 => "E.H. Kemp" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1600-0625.2007.00666_1.x" "Revista" => array:6 [ "tituloSerie" => "Exp Dermatol" "fecha" => "2008" "volumen" => "17" "paginaInicial" => "139" "paginaFinal" => "140" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18205713" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0170" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Low catalase levels in the epidermis of patients with vitiligo" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "K.U. Schallreuter" 1 => "J.M. Wood" 2 => "J. Berger" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/1523-1747.ep12492612" "Revista" => array:6 [ "tituloSerie" => "J Invest Dermatol" "fecha" => "1991" "volumen" => "97" "paginaInicial" => "1081" "paginaFinal" => "1085" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/1748819" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0175" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genetic polymorphism of the Nrf2 promoter region is associated with vitiligo risk in Han Chinese populations" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "P. Song" 1 => "K. Li" 2 => "L. Liu" 3 => "X. Wang" 4 => "Z. Jian" 5 => "W. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/jcmm.12874" "Revista" => array:6 [ "tituloSerie" => "J Cell Mol Med" "fecha" => "2016" "volumen" => "20" "paginaInicial" => "1840" "paginaFinal" => "1850" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27222475" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0180" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Ma" 1 => "S. Li" 2 => "L. Zhu" 3 => "S. Guo" 4 => "X. Yi" 5 => "T. Cui" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.freeradbiomed.2018.10.421" "Revista" => array:6 [ "tituloSerie" => "Free Radic Biol Med" "fecha" => "2018" "volumen" => "129" "paginaInicial" => "492" "paginaFinal" => "503" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30342186" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0185" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The role of transcription factor Nrf2 in skin cells metabolism" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A. Gęgotek" 1 => "E. Skrzydlewska" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00403-015-1554-2" "Revista" => array:6 [ "tituloSerie" => "Arch Dermatol Res" "fecha" => "2015" "volumen" => "307" "paginaInicial" => "385" "paginaFinal" => "396" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25708189" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0190" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The nuclear factor (erythroid-derived 2)-like 2 (NRF2) antioxidant response promotes melanocyte viability and reduces toxicity of the vitiligo-inducing phenol monobenzone" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "O.A. Arowojolu" 1 => "S.J. Orlow" 2 => "N. Elbuluk" 3 => "P. Manga" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/exd.13350" "Revista" => array:6 [ "tituloSerie" => "Exp Dermatol" "fecha" => "2017" "volumen" => "26" "paginaInicial" => "637" "paginaFinal" => "644" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28370349" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0195" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Reduced Nrf2 activation in PI3K phosphorylation-impaired vitiliginous keratinocytes increases susceptibility to ROS-generating chemical-induced apoptosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "H. Kim" 1 => "C.S. Park" 2 => "A.Y. Lee" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/tox.22461" "Revista" => array:6 [ "tituloSerie" => "Environ Toxicol" "fecha" => "2017" "volumen" => "32" "paginaInicial" => "2481" "paginaFinal" => "2491" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28836394" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0200" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A novel role of topical iodine in skin: activation of the Nrf2 pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Ben-Yehuda Greenwald" 1 => "M. Frušić-Zlotkin" 2 => "Y. Soroka" 3 => "S. Ben-Sasson" 4 => "H. Bianco-Peled" 5 => "R. Kohen" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Free Radic Biol Med" "fecha" => "2017" "volumen" => "104" "paginaInicial" => "238" "paginaFinal" => "248" ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0205" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "HMGB1 deficiency reduces H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span>-induced oxidative damage in human melanocytes via the Nrf2 pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "K. Mou" 1 => "W. Liu" 2 => "Y. Miao" 3 => "F. Cao" 4 => "P. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/jcmm.13895" "Revista" => array:5 [ "tituloSerie" => "J Cell Mol Med" "fecha" => "2018" "volumen" => "22" "paginaInicial" => "6148" "paginaFinal" => "6156" ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0210" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Impaired activation of the Nrf2-ARE signaling pathway undermines H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span>-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Z. Jian" 1 => "K. Li" 2 => "P. Song" 3 => "G. Zhu" 4 => "L. Zhu" 5 => "T. Cui" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/jid.2014.152" "Revista" => array:6 [ "tituloSerie" => "J Invest Dermatol" "fecha" => "2014" "volumen" => "134" "paginaInicial" => "2221" "paginaFinal" => "2230" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24662764" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0215" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dysregulated autophagy increased melanocyte sensitivity to H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span>-induced oxidative stress in vitiligo" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. He" 1 => "S. Li" 2 => "W. Zhang" 3 => "W. Dai" 4 => "T. Cui" 5 => "G. Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/srep42394" "Revista" => array:4 [ "tituloSerie" => "Sci Rep" "fecha" => "2017" "volumen" => "10" "paginaInicial" => "42394" ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0220" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Protease-activated receptor-2 activates NQO-1 via Nrf2 stabilization in keratinocytes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "J.Y. Kim" 1 => "D.Y. Kim" 2 => "H. Son" 3 => "Y.J. Kim" 4 => "S.H. Oh" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jdermsci.2013.11.010" "Revista" => array:6 [ "tituloSerie" => "J Dermatol Sci" "fecha" => "2014" "volumen" => "74" "paginaInicial" => "48" "paginaFinal" => "55" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24326025" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0225" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The susceptibility to vitiligo is associated with NF-E2-related factor2 (Nrf2) gene polymorphisms: a study on Chinese Han population" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C.P. Guan" 1 => "M.N. Zhou" 2 => "A.E. Xu" 3 => "K.F. Kang" 4 => "J.F. Liu" 5 => "X.D. Wei" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1600-0625.2008.00752.x" "Revista" => array:6 [ "tituloSerie" => "Exp Dermatol" "fecha" => "2008" "volumen" => "17" "paginaInicial" => "1059" "paginaFinal" => "1062" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18537816" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0230" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Palladium and platinum nanoparticles activate AHR and NRF2 in human keratinocytes-implications in vitiligo therapy" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "G. Tsuji" 1 => "A. Hashimoto-Hachiya" 2 => "M. Takemura" 3 => "T. Kanemaru" 4 => "M. Ichihashi" 5 => "M. Furue" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jid.2017.02.981" "Revista" => array:6 [ "tituloSerie" => "J Invest Dermatol" "fecha" => "2017" "volumen" => "137" "paginaInicial" => "1582" "paginaFinal" => "1586" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28300598" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0235" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Melanocyte-protective effect of afzelin is mediated by the Nrf2-ARE signalling pathway via GSK-3β inactivation" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "E. Jung" 1 => "J.H. Kim" 2 => "M.O. Kim" 3 => "S.Y. Lee" 4 => "J. Lee" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/exd.13277" "Revista" => array:6 [ "tituloSerie" => "Exp Dermatol" "fecha" => "2017" "volumen" => "26" "paginaInicial" => "764" "paginaFinal" => "770" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27992083" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0240" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Simvastatin protects human melanocytes from H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span>-induced oxidative stress by activating Nrf2" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. Chang" 1 => "S. Li" 2 => "W. Guo" 3 => "Y. Yang" 4 => "W. Zhang" 5 => "Q. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jid.2017.01.020" "Revista" => array:6 [ "tituloSerie" => "J Invest Dermatol" "fecha" => "2017" "volumen" => "137" "paginaInicial" => "1286" "paginaFinal" => "1296" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28174051" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0245" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A double-blind, placebo-controlled, phase-<span class="elsevierStyleSmallCaps">ii</span> clinical trial to evaluate oral simvastatin as a treatment for vitiligo" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S.G. Vanderweil" 1 => "S. Amano" 2 => "W.C. Ko" 3 => "J.M. Richmond" 4 => "M. Kelley" 5 => "M.M. Senna" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jaad.2016.06.015" "Revista" => array:7 [ "tituloSerie" => "J Am Acad Dermatol" "fecha" => "2017" "volumen" => "76" "paginaInicial" => "150" "paginaFinal" => "151.e3" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27986135" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0009739X19300028" "estado" => "S300" "issn" => "0009739X" ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0250" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Molecular hydrogen protects human melanocytes from oxidative stress by activating Nrf2 signaling" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "W. Fang" 1 => "L. Tang" 2 => "G. Wang" 3 => "J. Lin" 4 => "W. Liao" 5 => "W. Pan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jid.2019.03.1165" "Revista" => array:6 [ "tituloSerie" => "J Invest Dermatol" "fecha" => "2020" "volumen" => "140" "paginaInicial" => "2230" "paginaFinal" => "2241.e9" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32234461" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0255" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "6-shogaol protects human melanocytes against oxidative stress through activation of the nrf2-antioxidant response element signaling pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "L. Yang" 1 => "F. Yang" 2 => "L. Teng" 3 => "I. Katayama" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3390/ijms21103537" "Revista" => array:4 [ "tituloSerie" => "Int J Mol Sci" "fecha" => "2020" "volumen" => "21" "paginaInicial" => "3537" ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0260" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Paeoniflorin resists H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span>-induced oxidative stress in melanocytes by <span class="elsevierStyleItalic">JNK/Nrf2/HO-1</span> pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J. Yuan" 1 => "Y. Lu" 2 => "H. Wang" 3 => "Y. Feng" 4 => "S. Jiang" 5 => "X. Gao" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3389/fphar.2020.00536" "Revista" => array:6 [ "tituloSerie" => "Front Pharmacol" "fecha" => "2020" "volumen" => "11" "paginaInicial" => "536" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32410998" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0009739X13003722" "estado" => "S300" "issn" => "0009739X" ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0265" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Apigenin protects human melanocytes against oxidative damage by activation of the Nrf2 pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "B. Zhang" 1 => "J. Wang" 2 => "G. Zhao" 3 => "M. Lin" 4 => "Y. Lang" 5 => "D. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s12192-020-01071-7" "Revista" => array:6 [ "tituloSerie" => "Cell Stress Chaperones" "fecha" => "2020" "volumen" => "25" "paginaInicial" => "277" "paginaFinal" => "285" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31953635" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0270" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Folic acid protects melanocytes from oxidative stress via activation of Nrf2 and inhibition of HMGB1" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "P. Du" 1 => "S. Zhang" 2 => "S. Li" 3 => "Y. Yang" 4 => "P. Kang" 5 => "J. Chen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1155/2021/1608586" "Revista" => array:5 [ "tituloSerie" => "Oxid Med Cell Longev" "fecha" => "2021" "volumen" => "2021" "paginaInicial" => "1608586" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34917229" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0275" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Ginkgo biloba extract protects human melanocytes from H<span class="elsevierStyleInf">2</span>O<span class="elsevierStyleInf">2</span>-induced oxidative stress by activating Nrf2" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Zhang" 1 => "X. Yi" 2 => "X. Su" 3 => "Z. Jian" 4 => "T. Cui" 5 => "S. Guo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/jcmm.14393" "Revista" => array:6 [ "tituloSerie" => "J Cell Mol Med" "fecha" => "2019" "volumen" => "23" "paginaInicial" => "5193" "paginaFinal" => "5199" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31148371" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0280" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Jerarquización de la evidencia: niveles de evidencia y grados de recomendación de uso actual" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "C. Manterola" 1 => "C. Asenjo-Lobos" 2 => "T. Otzen" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Rev Chil Infectol [Internet]" "fecha" => "2014" "volumen" => "31" "paginaInicial" => "705" "paginaFinal" => "718" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack616862" "titulo" => "Acknowledgments" "texto" => "<p id="par0120" class="elsevierStylePara elsevierViewall">We thank Dr. Martha Morales, head of Teaching and Research and Dr. Fermín Jurado Santa-Cruz, director of the Dermatology Center Dr. Ladislao de la Pascua, for their support in the drafting of this article.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/00017310/0000011300000007/v1_202207140532/S0001731022004768/v1_202207140532/en/main.assets" "Apartado" => array:4 [ "identificador" => "6210" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Revisiones" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/00017310/0000011300000007/v1_202207140532/S0001731022004768/v1_202207140532/en/main.pdf?idApp=UINPBA000044&text.app=https://actasdermo.org/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731022004768?idApp=UINPBA000044" ]
año/Mes | Html | Total | |
---|---|---|---|
2024 Noviembre | 26 | 10 | 36 |
2024 Octubre | 199 | 58 | 257 |
2024 Septiembre | 210 | 46 | 256 |
2024 Agosto | 241 | 94 | 335 |
2024 Julio | 178 | 44 | 222 |
2024 Junio | 185 | 47 | 232 |
2024 Mayo | 208 | 57 | 265 |
2024 Abril | 171 | 43 | 214 |
2024 Marzo | 149 | 40 | 189 |
2024 Febrero | 190 | 57 | 247 |
2024 Enero | 221 | 37 | 258 |
2023 Diciembre | 238 | 22 | 260 |
2023 Noviembre | 1172 | 113 | 1285 |
2023 Octubre | 1068 | 193 | 1261 |
2023 Septiembre | 1738 | 168 | 1906 |
2023 Agosto | 807 | 61 | 868 |
2023 Julio | 657 | 90 | 747 |
2023 Junio | 15790 | 66 | 15856 |
2023 Mayo | 792 | 68 | 860 |
2023 Abril | 413 | 48 | 461 |
2023 Marzo | 445 | 61 | 506 |
2023 Febrero | 416 | 48 | 464 |
2023 Enero | 451 | 85 | 536 |
2022 Diciembre | 904 | 116 | 1020 |
2022 Noviembre | 491 | 67 | 558 |
2022 Octubre | 374 | 85 | 459 |
2022 Septiembre | 379 | 83 | 462 |
2022 Agosto | 468 | 80 | 548 |
2022 Julio | 437 | 109 | 546 |
2022 Junio | 371 | 110 | 481 |