se ha leído el artículo
array:24 [ "pii" => "S000173102300306X" "issn" => "00017310" "doi" => "10.1016/j.ad.2022.06.030" "estado" => "S300" "fechaPublicacion" => "2023-07-01" "aid" => "3467" "copyright" => "AEDV" "copyrightAnyo" => "2023" "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "crp" "cita" => "Actas Dermosifiliogr. 2023;114:659" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:17 [ "pii" => "S0001731023004817" "issn" => "00017310" "doi" => "10.1016/j.ad.2022.06.035" "estado" => "S300" "fechaPublicacion" => "2023-07-01" "aid" => "3541" "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "crp" "cita" => "Actas Dermosifiliogr. 2023;114:T659" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "es" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">CARTA CIENTÍFICO-CLÍNICA</span>" "titulo" => "[Articulo traducido] Inteligencia artificial en la urticaria crónica: aprendizaje sobre una máquina no supervisada frente a una supervisada" "tienePdf" => "es" "tieneTextoCompleto" => "es" "paginas" => array:1 [ 0 => array:1 [ "paginaInicial" => "T659" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Artificial Intelligence in Chronic Urticaria: Unsupervised Versus Supervised Machine Learning" ] ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Y.S. Pathania" "autores" => array:1 [ 0 => array:2 [ "nombre" => "Y.S." "apellidos" => "Pathania" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731023004817?idApp=UINPBA000044" "url" => "/00017310/0000011400000007/v1_202307101051/S0001731023004817/v1_202307101051/es/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S0001731023004337" "issn" => "00017310" "doi" => "10.1016/j.ad.2023.01.015" "estado" => "S300" "fechaPublicacion" => "2023-07-01" "aid" => "3530" "copyright" => "AEDV" "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "crp" "cita" => "Actas Dermosifiliogr. 2023;114:T657-T658" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "es" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Cartas científico- clínicas</span>" "titulo" => " Acné en estudiantes de medicina, Marruecos: un estudio transversal" "tienePdf" => "es" "tieneTextoCompleto" => "es" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "T657" "paginaFinal" => "T658" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Acne in medical students, Morocco: A cross-sectional study" ] ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "H. Chahoub, O. El jouar, H. Belafki, S. Gallou" "autores" => array:4 [ 0 => array:2 [ "nombre" => "H." "apellidos" => "Chahoub" ] 1 => array:2 [ "nombre" => "O." "apellidos" => "El jouar" ] 2 => array:2 [ "nombre" => "H." "apellidos" => "Belafki" ] 3 => array:2 [ "nombre" => "S." "apellidos" => "Gallou" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731023004337?idApp=UINPBA000044" "url" => "/00017310/0000011400000007/v1_202307101051/S0001731023004337/v1_202307101051/es/main.assets" ] "asociados" => array:1 [ 0 => array:17 [ "pii" => "S0001731023004817" "issn" => "00017310" "doi" => "10.1016/j.ad.2022.06.035" "estado" => "S300" "fechaPublicacion" => "2023-07-01" "aid" => "3541" "documento" => "simple-article" "crossmark" => 1 "subdocumento" => "crp" "cita" => "Actas Dermosifiliogr. 2023;114:T659" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "es" => array:10 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">CARTA CIENTÍFICO-CLÍNICA</span>" "titulo" => "[Articulo traducido] Inteligencia artificial en la urticaria crónica: aprendizaje sobre una máquina no supervisada frente a una supervisada" "tienePdf" => "es" "tieneTextoCompleto" => "es" "paginas" => array:1 [ 0 => array:1 [ "paginaInicial" => "T659" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Artificial Intelligence in Chronic Urticaria: Unsupervised Versus Supervised Machine Learning" ] ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Y.S. Pathania" "autores" => array:1 [ 0 => array:2 [ "nombre" => "Y.S." "apellidos" => "Pathania" ] ] ] ] ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731023004817?idApp=UINPBA000044" "url" => "/00017310/0000011400000007/v1_202307101051/S0001731023004817/v1_202307101051/es/main.assets" ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Case and Research Letter</span>" "titulo" => "Artificial Intelligence in Chronic Urticaria: Unsupervised Versus Supervised Machine Learning" "tieneTextoCompleto" => true "saludo" => "<span class="elsevierStyleItalic">To the Editor</span>," "paginas" => array:1 [ 0 => array:1 [ "paginaInicial" => "659" ] ] "autores" => array:1 [ 0 => array:3 [ "autoresLista" => "Y.S. Pathania" "autores" => array:1 [ 0 => array:3 [ "nombre" => "Y.S." "apellidos" => "Pathania" "email" => array:1 [ 0 => "yashdeepsinghpathania@gmail.com" ] ] ] "afiliaciones" => array:1 [ 0 => array:2 [ "entidad" => "Department of Dermatology, Venereology and Leprology, All India Institute of Medical Sciences, Rajkot, Gujarat, India" "identificador" => "aff0005" ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Inteligencia artificial en la urticaria crónica: aprendizaje sobre una máquina no supervisada frente a una supervisada" ] ] "textoCompleto" => "<span class="elsevierStyleSections"><p id="par0005" class="elsevierStylePara elsevierViewall">Machine learning (ML) is a subset of artificial intelligence (AI) which most often utilizes image recognition and analysis for the diagnosis in most of the medical fields like dermatology, ophthalmology, radiology and medicine.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">1</span></a> AI has potential role in dermatology such as screening and diagnosis of melanoma, basal cell carcinoma (BCC), psoriasis and other inflammatory dermatoses. ML is a method of creating AI. It has various approaches viz., supervised, unsupervised and semi-supervised or reinforcement learning.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">2</span></a> Supervised approach uses labelled data and has been utilized in detecting benign versus malignant skin lesions. Unsupervised learning approach has been utilized in detecting dermoscopic diagnosis of BCC. Machine learning can also be applied in chronic urticaria (CU). Recently, in a study by Türk et al.,<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">3</span></a> authors have tried to distinguish different chronic urticaria (CU) subtypes phenotypically and pathogenetically through unsupervised model of machine learning. The authors have generated four clusters in their study which corresponded to a specific phenotypes and biomarkers. ML has much more potential in CU. Lesions in CU look the same but ML can also play a role in defining the severity through the number and size of the wheal. Larger wheal size corresponds to more severe and difficult to treat CU.<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">4</span></a> The number of lesions may be detected through an algorithm in ML which may aid in generating another cluster of CU with increased severity. The clustering in unsupervised learning is advantageous when data seems substantially different to one another. However, in CU data may not vary much therefore, there is a concept of semi-supervised learning in ML which utilizes both labelled and unlabelled data.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">2</span></a> This approach would be much practical and easy which can utilize less labelled data and more unlabelled data for its operation. The qualitative data other than the images may be better utilized in defining and differentiating subtypes of CU through this learning. The unsupervised learning may be more helpful in generating new clusters through the unlabelled data, but addition of labelled data may further provide precise information in CU.</p><p id="par0010" class="elsevierStylePara elsevierViewall">Moreover, addition of data for the validated scores such as UAS7 (urticaria activity score) and UCT (urticaria control test) would really augment in classifying and differentiating the disease activity and control through ML.</p><p id="par0015" class="elsevierStylePara elsevierViewall">AI in CU offers an innovative approach to develop diagnostic algorithms which may potentially aid in diagnosis and classifying the subtypes of CU. It may also augment in evaluation of multiple modalities or issues at the same time. Albeit, the development and validation of AI algorithms require large data inputs either learned or labelled data and unlabelled but ML in dermatology especially CU is a new untouched field which have bright future prospects. Therefore, large studies are required in future in this field to validate the findings.</p><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0005">Conflict of interests</span><p id="par0020" class="elsevierStylePara elsevierViewall">The author declares no conflict of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0005" "titulo" => "Conflict of interests" ] 1 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:4 [ 0 => array:3 [ "identificador" => "bib0025" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A. Kaplan" 1 => "H. Cao" 2 => "J.M. FitzGerald" 3 => "N. Iannotti" 4 => "E. Yang" 5 => "J.W.H. Kocks" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jaip.2021.02.014" "Revista" => array:6 [ "tituloSerie" => "J Allergy Clin Immunol Pract" "fecha" => "2021" "volumen" => "9" "paginaInicial" => "2255" "paginaFinal" => "2261" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33618053" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0030" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Artificial intelligence in dermatology: “unsupervised” versus “supervised” machine learning" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Y. Singh Pathania" 1 => "A. Budania" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/ijd.15288" "Revista" => array:6 [ "tituloSerie" => "Int J Dermatol" "fecha" => "2021" "volumen" => "60" "paginaInicial" => "e28" "paginaFinal" => "e29" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33128460" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0035" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identification of chronic urticaria subtypes using machine learning algorithms" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M. Türk" 1 => "R. Ertaş" 2 => "E. Zeydan" 3 => "Y. Türk" 4 => "M. Atasoy" 5 => "A. Gutsche" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/all.15119" "Revista" => array:6 [ "tituloSerie" => "Allergy" "fecha" => "2022" "volumen" => "77" "paginaInicial" => "323" "paginaFinal" => "326" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/34606643" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0040" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Classification of urticaria" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "T. Zuberbier" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4103/0019-5154.110830" "Revista" => array:6 [ "tituloSerie" => "Indian J Dermatol" "fecha" => "2013" "volumen" => "58" "paginaInicial" => "208" "paginaFinal" => "210" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23723472" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/00017310/0000011400000007/v1_202307101051/S000173102300306X/v1_202307101051/en/main.assets" "Apartado" => array:4 [ "identificador" => "6160" "tipo" => "SECCION" "es" => array:2 [ "titulo" => "Cartas científico-clínicas" "idiomaDefecto" => true ] "idiomaDefecto" => "es" ] "PDF" => "https://static.elsevier.es/multimedia/00017310/0000011400000007/v1_202307101051/S000173102300306X/v1_202307101051/en/main.pdf?idApp=UINPBA000044&text.app=https://actasdermo.org/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S000173102300306X?idApp=UINPBA000044" ]
año/Mes | Html | Total | |
---|---|---|---|
2024 Noviembre | 12 | 14 | 26 |
2024 Octubre | 57 | 47 | 104 |
2024 Septiembre | 61 | 43 | 104 |
2024 Agosto | 80 | 72 | 152 |
2024 Julio | 57 | 47 | 104 |
2024 Junio | 68 | 45 | 113 |
2024 Mayo | 55 | 50 | 105 |
2024 Abril | 74 | 38 | 112 |
2024 Marzo | 63 | 49 | 112 |
2024 Febrero | 61 | 50 | 111 |
2024 Enero | 57 | 28 | 85 |
2023 Diciembre | 62 | 23 | 85 |
2023 Noviembre | 92 | 48 | 140 |
2023 Octubre | 107 | 39 | 146 |
2023 Septiembre | 73 | 24 | 97 |
2023 Agosto | 93 | 40 | 133 |
2023 Julio | 144 | 75 | 219 |
2023 Junio | 78 | 39 | 117 |
2023 Mayo | 99 | 55 | 154 |
2023 Abril | 4 | 15 | 19 |