Journal Information
Vol. 101. Issue 7.
Pages 585-599 (September 2010)
Share
Share
Download PDF
More article options
Vol. 101. Issue 7.
Pages 585-599 (September 2010)
Novelties in dermatology
Full text access
Lipid Nutrition and the Epidermal Barrier: The Connection Between Immune-Mediated Inflammatory Diseases and Peroxisome Proliferator-Activated Receptors, a New Therapeutic Target in Psoriasis and Atopic Dermatitis
Barrera epidérmica y nutrición lipídica. La conexión PPAR e inmunopatología inflamatoria como nuevas dianas de tratamiento en dermatitis atópica y psoriasis
Visits
6529
V.G. Villarrubiaa,
Corresponding author
villarrubia@bioaveda.com

Corresponding author.
, S. Vidal-Asensib, V. Pérez-Bañascoc, J. Cuevas-Santosd, R. Cisterna-Cáncere
a Departamento de I+D+i, Inmunología, Bioaveda, Jaén, Spain
b Servicio de Dermatología, Hospital Gómez-Ulla, Madrid, Spain
c Servicio de Nefrología, Hospital de Jaén, Jaén, Spain
d Servicio de Patología, Hospital de Guadalajara, Guadalajara, Spain
e Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina, Universidad del País Vasco, Bilbao, Spain
This item has received
Article information
Abstract

The authors describe peroxisome proliferator-activated receptor (PPAR) transcription factors as connectors between the enzymatic mechanisms of the epidermal barrier and the abnormal immune and inflammatory responses that characterize atopic dermatitis and psoriasis. Also described is a new connection between lipid metabolism and the epidermal barrier. A suggestion that emerges is that atopic dermatitis and psoriasis share at least 2 pathogenic mechanisms-namely, deficient expression of PPAR-α and impaired production of interleukin-10 and interferon-γ-in spite of differences in causes and manifestations. A standardized olive oil formulation with powerful bactericidal and fungicidal effects also has the ability to increase serum levels of these 2 cytokines and regulate serum levels of high-density lipoprotein cholesterol in patients at high risk for inflammatory and cardiovascular disease, suggesting that these may be among the mechanisms responsible for the benefits observed following oral and/or topical administration in patients with atopic dermatitis or psoriasis.

Keywords:
Atopic dermatitis
Psoriasis
Peroxisome proliferator-activated receptors (PPAR)
Epidermal barrier
Interleukin-10 Interferon-γ
Olive oils
Resumen

Los autores describen los factores peroxisome proliferator-activated receptors (PPAR) como conectores entre los mecanismos enzimáticos de la barrera epidérmica (BE) y las alteraciones inmuno/inflamatorias que caracterizan a dermatitis atópica (DA) y psoriasis. Igualmente, se describe una nueva conexión entre el metabolismo lipídico y la BE. El análisis de estos hechos permite sugerir que DA y psoriasis, aunque diferentes en su causalidad y clínica, exhiben al menos dos hechos patogénicos comunes, que se manifiestan por defectos en la expresión de PPAR-α y en la producción de IL-10 e IFN-γ. La capacidad de una formulación magistral de aceites de oliva (FMAO) para aumentar los niveles séricos de ambas citocinas, y regular el colesterol HDL sérico, en pacientes con alto riesgo inflamatorio/cardiovascular, junto a sus potentes efectos bactericidas y fungicidas, sugiere que estos sean algunos de los mecanismos responsables de los positivos efectos observados con la FMAO (oral y/o tópica) en pacientes con DA y psoriasis.

Palabras clave:
Dermatitis atópica
Psoriasis
PPAR
Barrera epidérmica
IL-10/IFN-γ
Aceites de oliva
Full text is only aviable in PDF
References
[1.]
Villarrubia VG, Vidal Asensi S, Llácer JM, Llácer A, Iglesias A, Pérez Bañasco V, et al. Barrera epidérmica y nutrición lipídica: personalizando la dermatitis atópica. I. Enzimas reguladoras y proteínas fijadoras de ácidos grasos (FABP) en la conexión PPAR e inmunológica. 2010. [Cited March 9, 2010]. Available from: http://www.bioaveda.com/barrera%20epidermica.pdf.
[2.]
M.K. Oyoshi, R. He, L. Kumar, J. Yoon, R.S. Geha.
Cellular and molecular mechanisms in atopic dermatitis.
Adv Immunol, 102 (2009), pp. 135-226
[3.]
M.K. Oyoshi, G.F. Murphy, R.S. Geha.
Filaggrin-deficient mice exhibit T(H)17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigens.
J Allergy Clin Immunol, 124 (2009), pp. 485-493
[4.]
M. Muller, S. Kersten.
Nutrigenomics: goals and strategies.
Nat Rev Genet, 4 (2003), pp. 315-322
[5.]
B. Desvergne, L. Michalik, W. Wahli.
Transcriptional regulation of metabolism.
Physiol Rev, 86 (2006), pp. 465-514
[6.]
P. Germain, B. Staels, C. Dacquet, M. Spedding, V. Laudet.
Overview of nomenclature of nuclear receptors.
Pharmacol Rev, 58 (2006), pp. 685-704
[7.]
H. Sampath, J.M. Ntambi.
Polyunsaturated fatty acid regulation of genes of lipid metabolism.
[8.]
B. Desvergne, W. Wahli.
Peroxisome proliferator-activated receptors: nuclear control of metabolism.
Endocr Rev, 20 (1999), pp. 649-688
[9.]
C. Phelps, V. Gburcik, E. Suslova, P. Dudek, F. Forafonov, N. Bot, et al.
Fungi and animals may share a common ancestor to nuclear receptors.
Proc Natl Acad Sci U S A, 103 (2006), pp. 7077-7081
[10.]
M. Bünger, H.M. van den Bosch, J. van der Meijde, S. Kersten, G.J.E.J. Hooiveld, M. Müller.
Genome-wide analysis of PPARalpha activation in murine small intestine.
Physiol Genomics, 30 (2007), pp. 192-204
[11.]
C.T. Phan, P. Tso.
Intestinal lipid absorption and transport.
Front Biosci, 6 (2001), pp. D299-D319
[12.]
H.M. de Vogel-van des Bosch, M. Bünger, P.J. de Groot, H. Bosch- Vermeulen, G.J.E.J. Hooiveld, M. Müller.
PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression.
BMC Genomics, 9 (2008), pp. 231
[13.]
W.E. Roediger, S. Nance.
Metabolic induction of experimental ulcerative colitis by inhibition of fatty acid oxidation.
Br J Exp Pathol, 67 (1986), pp. 773-782
[14.]
H.C. Lee, Y.H. Wei.
Mitochondrial role in life and death of the cell.
J Biomed Sci, 7 (2000), pp. 2-15
[15.]
V. Bocher, I. Pineda-Torra, J.C. Fruchart, B. Staels.
PPAR: transcription factors controlling lipid and lipoprotein metabolism.
Ann N Y Acad Sci, 967 (2002), pp. 7-18
[16.]
P. Sertznig, M. Seifert, W. Tilgen, J. Reichrath.
Peroxisome proliferator-activated receptors (PPAR) and the human skin: importance of PPAR in skin physiology and dermatologic diseases.
Am J Clin Dermatol, 9 (2008), pp. 15-31
[17.]
L. Michalik, W. Wahli.
Peroxisome proliferator-activated receptors (PPAR) in skin health, repair and disease.
Biochim Biophys Acta, 1771 (2007), pp. 991-998
[18.]
E. Fuchs, V. Horsley.
More than one way to skin.
Genes Dev, 22 (2008), pp. 976-985
[19.]
Y.J. Jiang, Y. Uchida, B. Lu, P. Kim, C. Mao, M. Akiyama, et al.
Ceramide stimulates ABCA 12 expression via peroxisome proliferator-activated receptor delta in human keratinocytes.
J Biol Chem, 284 (2009), pp. 18942-18952
[20.]
G.S.K. Pilgram, D.C.J. Vissers, H. van der Meulen, S. Pavel, S.P.M. Lavrijsen, J.A. Bouwstra, et al.
Aberrant lipid organization in stratum corneum of patients with atopic dermatitis and lamellar ichthyosis.
J Invest Dermatol, 117 (2001), pp. 710-717
[21.]
A.V. Rawlings.
Trends in stratum corneum research and the management of dry skin conditions.
Int J Cosmet Sci, 25 (2003), pp. 63-95
[22.]
P.G. Sator, J.B. Schmidt, H. Hönigsmann.
Comparison of epidermal hydration and skin surface lipids individuals and in patients with atopic dermatitis.
J Am Acad Dermatol, 48 (2003), pp. 352-358
[23.]
N.R. Trivedi, Z. Cong, A.M. Nelson, A.J. Albert, L.L. Rosamilia, S. Sivarajah, et al.
Peroxisome proliferator-activated receptors increase human sebum production.
J Invest Dermatol, 126 (2006), pp. 2002-2009
[24.]
D. Staumont-Sallé, G. Abboud, C. Brénuchon, A. Kanda, T. Roumier, C. Lavogiez, et al.
Peroxisome proliferator-activated receptor alpha regulates skin inflammation and humoral response in atopic dermatitis.
J Allergy Clin Immunol, 121 (2008), pp. 962-968
[25.]
R. Behshad, K.D. Cooper, N.J. Korman.
A retrospective case series review of the peroxisome proliferator-activated receptor ligand rosiglitazone in the treatment of atopic dermatitis.
Arch Dermatol, 144 (2008), pp. 84-88
[26.]
P. Thuillier, A.R. Brash, J.P. Kehrer, J.B. Stimmel, L.M. Leesnitzer, P. Yang, et al.
Inhibition of peroxisome proliferator-activated receptor (PPAR)-mediated keratinocyte differentiation by lipoxygenase inhibitors.
Biochem J, 366 (2002), pp. 901-910
[27.]
S.J. Muga, P. Thuillier, A. Pavone, J.E. Rundhaug, W.E. Boeglin, M. Jisaka, et al.
8S-lipoxigenase products activate peroxisome proliferator-activated receptor a and induce differentiation in murine keratinocytes.
Cell Growth Differ, 11 (2000), pp. 447-454
[28.]
M. Westergaard, J. Henningsen, M.L. Svendsen, C. Johansen, U.B. Jensen, H.D. Schroder, et al.
Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid.
J Invest Dermatol, 116 (2001), pp. 702-712
[29.]
M.Y. Sheu, A.J. Fowler, J. Kao, M. Schmuth, K. Schoojans, J. Auwerx, et al.
Topical peroxisome proliferator activated receptor-a activators reduce inflammation in irritant and allergic contact dermatitis models.
J Invest Dermatol, 118 (2002), pp. 94-101
[30.]
K. Mochizuki, H. Mochizuki, H. Kawai, Y. Ogura, M. Shimada, S. Takase, et al.
Possible role of fatty acids in milk as the regulator of the expression of cytosolic binding proteins for fatty acids and vitamin A through PPAR in developing rats.
J Nutr Sci Vitaminol (Tokyo), 53 (2007), pp. 515-521
[31.]
V.G. Villarrubia, M.C. Moreno Koch, L.A. Costa.
El fenotipo inmunoneonatal. III. Impacto de la lactancia materna sobre la salud.
An Cient Centro Gallego Buenos Aires, 1 (2007), pp. 33-48
[32.]
F. Rodríguez de Fonseca, M. Navarro, R. Gómez, L. Escuredo, F. Nava, J. Fu, et al.
An anorexia lipid mediator regulated by feeding.
Nature, 414 (2001), pp. 209-212
[33.]
J. Fu, G. Astarita, S. Gaetani, J. Kim, B.J. Cravatt, K. Mackie, et al.
Food intake regulates oleoylethanolamide formation and degradation in the proximal small intestine.
J Biol Chem, 282 (2007), pp. 1518-1528
[34.]
J. Fu, S. Gaetani, F. Oveisi, J. Lo Verme, A. Serrano, F. Rodríguez de Fonseca, et al.
Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPARalpha.
Nature, 425 (2003), pp. 90-93
[35.]
J. Lo Verme, J. Fu, G. Astarita, G. La Rana, R. Russo, A. Calignano, et al.
The nuclear receptor peroxisome proliferatoractivated receptor-a mediates the anti-inflammatory actions of palmitoylethanolamide.
Mol Pharmacol, 67 (2005), pp. 15-19
[36.]
V. Pérez-Bañasco, J.M. Gil-Cunquero, F. Borrego-Utiel, M. Gassó, P. Segura-Torres, F. Warleta, et al.
Estudio preliminar sobre eficacia y tolerancia de un “coupage” de aceite de oliva en pacientes con enfermedad renal crónica. Evaluación del estado de nutrición.
Nefrologia, 27 (2007), pp. 472-481
[37.]
V.G. Villarrubia, J.M. Gil-Cunquero, E. Albacete, F. Borrego, V. Pérez-Bañasco.
Efectos de un aceite de oliva sobre el colesterol y el estreñimiento en personas de edad avanzada sanos y con enfermedad renal crónica.
Med Antienvej, 11 (2007), pp. 29-38
[38.]
E. Boelsma, H.F. J. Hendricks, L. Roza.
Nutritional skin care: health effects of micronutrients and fatty acids.
Am J Clin Nutr, 73 (2001), pp. 853-864
[39.]
M.B. Purba, A. Kouris-Blazos, N. Wattanapenpaiboon, W. Lukito, E.M. Rothenberg, B.C. Steen, et al.
Skin wrinkling: can food make a difference?.
J Am Coll Nutr, 20 (2001), pp. 71-80
[40.]
V.G. Villarrubia, A. Llácer Pérez, J. Bayón.
Piel y lípidos: dermatitis atópica y aceites de oliva.
Más Dermatol, 7 (2009), pp. 16-19
[41.]
S. Vidal-Asensi, V. Pérez-Bañasco, R. Cisterna-Cáncer, V.G. Villarrubia.
A blend of extra virgin olive oils ameliorates atopic dermatitis and psoriasis.
A pilot study. XVII Congress EADV, pp. 114
[42.]
M. Schmuth, Y.J. Jiang, S. Dubrac, P.M. Elias, K.R. Feingold.
Thematic Review Series: Skin Lipids. Peroxisome proliferatoractivated receptors and liver X receptors in epidermal biology.
J Lipid Res, 49 (2008), pp. 499-509
[43.]
B. Hennig, E. Oesterling, M. Toborek.
Environmental toxicity, nutrition, and gene interactions in the development of atherosclerosis.
Nutr Metab Cardiovasc Dis, 17 (2007), pp. 162-169
[44.]
P. Cabras, P. Caboni, M. Cabras, A. Angioni, M. Russo.
Rotenone residues on olives and in olive oil.
J Agric Food Chem, 50 (2002), pp. 2576-2580
[45.]
B. Hennig, G. Reiterer, Z. Majkova, E. Oesterling, P. Meerarani, M. Toborek.
Modification of environmental toxicity by nutrients: implications in atherosclerosis.
Cardiovasc Toxicol, 5 (2005), pp. 153-160
[46.]
N. Benachour, G.-E. Séralini.
Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells.
Chem Res Toxicol, 22 (2009), pp. 97-105
[47.]
L. Albanito, R. Lappano, A. Madeo, A. Chimento, E.R. Prossnitz, A.R. Cappello, et al.
G-protein-coupled receptor 30 and estrogen receptor-a are envolved in the proliferative effects induced by atrazine in ovarian cancer cells.
Environ Health Perspect, 116 (2008), pp. 1648-1655
[48.]
P.D. Darbre.
Environmental oestrogens, cosmetics and breast cancer.
Best Pract Res Clin Endocrinol Metab, 20 (2006), pp. 121-143
[49.]
E. Diamanti-Kandarakis, J.P. Bourguignon, L.C. Giudice, R. Hauser, G.S. Prings, A.M. Soto, et al.
Endocrine-disrupting chemicals: an Endocrine Society scientific statement.
Endocr Rev, 30 (2009), pp. 293-342
[50.]
R.M. Brand, J. Pike, R.M. Wilson, A.R. Charron.
Sunscreens containing physical UV blockers can increase transdermal absorption of pesticides.
Toxicol Ind Health, 19 (2003), pp. 9-16
[51.]
X. Gu, T. Wang, D.M. Collins, S. Kasichayanula, F.J. Burczynski.
In vitro evaluation of concurrent use of commercially available insect repellent and sunscreen preparations.
Br J Dermatol, 152 (2005), pp. 1263-1267
[52.]
M. Cattani, C. Krzysztof, J. Edwards, D. Pisaniello.
Potential dermal and inhalation exposure to chlorpyrifos in Australian pesticide workers.
Ann Occup Hyg, 45 (2001), pp. 299-308
[53.]
R.M. Brand, C. Mueller.
Transdermal penetration of atrazine, alachlor, and trifluralin: effect of formulation.
Toxicol Sci, 68 (2002), pp. 18-23
[54.]
E.M. Ostrea, E. Villanueva-Uy, D.M. Bielawski, N.C. Posecion, M.L. Corrion, Y. Jin, et al.
Maternal hair- an appropriate matrix for detecting maternal exposure to pesticides during pregnancy.
Environ Res, 101 (2006), pp. 312-322
[55.]
H.G. Penagos.
Contact dermatitis caused by pesticides among banana plantation workers in Panama.
Int J Occup Environ Health, 8 (2002), pp. 14-18
[56.]
H. Penagos, C. Ruepert, T. Partanen, C. Wesseling.
Pesticide patch test series for the assessment of allergic contact dermatitis among banana plantation workers in Panama.
Dermatitis, 15 (2004), pp. 137-145
[57.]
Y. Wohl, I. Goldberg, I. Shirazi, S. Brenner.
Chlorpyrifos exacerbating pemphigus vulgaris: a preliminary report and suggested in vitro immunologic evaluation model.
Skinmed, 5 (2006), pp. 111-113
[58.]
A.R. Pont, A.R. Charron, R.M. Brand.
Active ingredients in sunscreens act as topical penetration enhancers for the herbicide 2,4-dichlorophenoxyacetic acid.
Toxicol Appl Pharmacol, 195 (2004), pp. 348-354
[59.]
M. Mizoi, F. Takabayashi, M. Nakano, Y. An, Y. Sagesaka, K. Kato, et al.
The role of trivalent dimethylated arsenic in dimethylarsinic acid-promoted skin and lung tumorigenesis in mice: tumor-promoting action through the induction of oxidative stress.
Toxicol Lett, 158 (2005), pp. 87-94
[60.]
V.G. Villarrubia, L. Sánchez, M. Alvárez-Mon.
Las nuevas vacunas y la respuesta inmunológica. La memoria inmunológica.I. Respuesta humoral frente a respuesta celular.
Med Clin (Barc), 107 (1996), pp. 146-154
[61.]
V.G.G. Villarrubia, C. Calvo, G. Sada.
Las nuevas vacunas y la respuesta inmunológica. II. El entorno de la presentación antigénica. Adyuvantes como inductores de linfocitos T-inductores de respuestas de mediación celular.
Med Clin (Barc), 107 (1996), pp. 185-196
[62.]
A.K. Abbas, K.M. Murphy, A. Sher.
Functional diversity of helper T lymphocytes.
Nature, 383 (1996), pp. 787-793
[63.]
A. O’Garra, P. Vieira.
Regulatory T cells and mechanisms of immune system control.
Nat Med, 10 (2004), pp. 801-805
[64.]
L.E. Harrington, R.D. Hatton, P.R. Mangan, H. Turner, T.L. Murphy, K.M. Murphy, et al.
Interleukin-17 producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages.
Nat Immunol, 6 (2005), pp. 1123-1132
[65.]
R.L. Reinhardt, S.J. Kang, H.E. Liang, R.M. Locksley.
T helper cell effector fates-who, how and where?.
Curr Opin Immunol, 18 (2006), pp. 271-277
[66.]
C.T. Weaver, L.E. Harrington, P.R. Mangan, M. Gavrieli, K.M. Murphy.
Th17: and effector CD4T cell lineage with regulatory T cells ties.
Immunity, 24 (2006), pp. 677-688
[67.]
B. Afzali, G. Lombardi, R.I. Lechler, G.M. Lord.
The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease.
Clin Exp Immunol, 148 (2007), pp. 32-46
[68.]
V. García Villarrubia, M.C. Moreno Koch.
Cellular immunity in an experimental ascites tumor: tumor immunostimulation by splenic lymphocytic cells.
Rev Esp Oncol, 28 (1981), pp. 169-194
[69.]
V.G. Villarrubia, M.C. Moreno Koch, C. G Calvo, S. González, M. Alvarez-Mon.
The immunosenescent phenotype in mice and humans can be defined by alterations in the natural immunity. Reversal by immunomodulation with oral AM3.
Immunopharmacol Immunotoxicol, 19 (1997), pp. 53-74
[70.]
V.G. Villarrubia, P. González, C. García Calvo, M. de las Heras.
Patogenia inmunológica/inflamatoria del asma: El predominio Th2 y su relación con los mecanismos de desvío inmunológico durante las épocas fetal y neonatal. Implicaciones terapéuticas.
Allergol Immunopathol (Madr), 27 (1999), pp. 213-231
[71.]
V.G. Villarrubia, S.R. Navarro.
Inmunopatogenia del envejecimiento: el deterioro de la inmunidad innata y su repercusión sobre la inmunidad específica. Restauración por AM3.
Rev Esp Geriatr Gerontol, 35 (2000), pp. 30-42
[72.]
I.J. O'Shea, W.E. Paul.
Regulation of T(H)1 differentiationcontrolling the controllers.
Nat Immunol, 3 (2002), pp. 506-508
[73.]
K.M. Murphy, S.L. Reiner.
The lineage decisions of helper T cells.
Nat Rev Immunol, 2 (2002), pp. 933-944
[74.]
J. Zhu, H. Yamane, J. Cote-Sierra, L. Guo, W.E. Paul.
GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors.
Cell Res, 16 (2006), pp. 3-10
[75.]
D. Agnello, C.S. Lankford, J. Bream, A. Morinobu, M. Gadina, J.J. O'Shea, et al.
Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights.
J Clin Immunol, 23 (2003), pp. 147-161
[76.]
Q. Yu, A. Sharma, S.Y. Oh, H.G. Moon, M.Z. Hossain, T.M. Salay, et al.
T cell factor 1 initiates the T helper type fate by inducing the transcription factor GATA-3 and repressing interferon-gamma.
Nat Immunol, 10 (2009), pp. 992-999
[77.]
E. Betelli, T. Korn, V.K. Kuchroo.
Th17: The third member of the effector T cell Trilogy.
Curr Opin Immunol, 19 (2007), pp. 652-657
[78.]
S. González, M.V. Alcaráz, J. Cuevas, M. Pérez, P. Jaén, M. Alvarez- Mon, et al.
An extract of the fern Polypodium leucotomos modulates Th1/Th2 cytokines balance in vitro and appears to exhibit ant-angiogenic activities in vivo: pathogenic relationships and therapeutic implications.
Anticancer Res, 20 (2000), pp. 1567-1576
[79.]
V.G. Villarrubia, S. González, J. Cuevas.
Alteraciones inmunológicas provocadas por la radiación ultravioleta. Su relación patogénica con el fotoenvejecimiento y la aparición de cáncer de piel.
Piel, 11 (1996), pp. 462-470
[80.]
V.G. Villarrubia, R. Tarazona, R. Solana, S. González.
Virus del papiloma humano y radiación ultravioleta: unas amistades peligrosas para la piel (II). Inmunopatogenia del cáncer cutáneo no melanoma. El papel iniciador y promotor de la radiación ultravioleta. Infiltrado inflamatorio y escape tumoral.
Piel, 16 (2001), pp. 494-505
[81.]
S. Piconese, G. Gri, S. Musio, A. Gorzanelli, B. Frossi, R. Pedotti, et al.
Mast cells counteract regulatory T cell suppression through interleukin-6 and OX40/OX40L axis toward Th17 cell differentiation.
Blood, 114 (2009), pp. 2639-2648
[82.]
L.F. Lu, E.F. Lind, D.C. Gondek, K.A. Bennett, M.V. Gleeson, K. Pino- Lagos, et al.
Mast cells are essential intermediaries in regulatory T-cell tolerance.
Nature, 442 (2006), pp. 997-1002
[83.]
L.H. Glimcher.
Trawling for treasure: tales of T-bet.
Nat Immunol, 8 (2007), pp. 448-450
[84.]
J.D. Farrar, W. Ouyang, M. Lohning, M. Assenmacher, A. Raddruch, O. Kanagawa, et al.
An instructive component in T helper type 2 (Th2) development mediated by GATA-3.
J Exp Med, 193 (2001), pp. 643-650
[85.]
I.I. Ivanov, B.S. McKenzie, L. Zhou, C.E. Tadokoro, A. Lepelley, J.J. Lafaille, et al.
The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL- 17+ T helper cells.
Cell, 126 (2006), pp. 1121-1133
[86.]
S.F. Ziegler, J.H. Buckner.
FOXP3 and the regulation of Treg/ Th17 differentiation.
Microbes Infect, 11 (2009), pp. 594-598
[87.]
D. Mucida, Y. Park, G. Kim, O. Turovskaya, I. Scott, M. Kronenberg, et al.
Reciprocal Th17 and regulatory T cell differentiation mediated by retinoic acid.
Science, 317 (2007), pp. 256-260
[88.]
S. Xiao, H. Jin, T. Korn, S.M. Liu, M. Oukka, B. Lim, et al.
Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signalling and inhibiting IL-6 and IL-23 receptor expression.
J Immunol, 181 (2008), pp. 2277-2284
[89.]
M. Yamamoto, T. Kamigaki, K. Yamashita, Y. Hori, H. Hasegawa, D. Kuroda, et al.
Enhancement of anti-tumor immunity by high levels of dendritic cell fusion hybrids and regulatory T cell depletion in pancreatic cancer.
Oncol Rep, 22 (2009), pp. 337-343
[90.]
F. Annunziato, L. Cosmi, F. Liotta, E. Maggi, S. Romagnani.
Human Th17 cells: are they different from murine Th17 cells?.
Eur J Immunol, 39 (2009), pp. 637-640
[91.]
S.H. Wood, D.N. Clements, W.E. Ollier, T. Nuttal, N.A. McEwan, S.D. Carter.
Gene expression in canine atopic dermatitis and correlation with clinical severity scores.
J Dermatol Sci, 55 (2009), pp. 27-33
[92.]
R. Marsella, G. Girolomoni.
Canine models of atopic dermatitis: a useful tool with untapped potential.
J Invest Dermatol, 129 (2009), pp. 2351-2357
[93.]
K.E. Keppel, K.L. Campbell, F.A. Zuckerman, E.A. Greely, D.J. Schaeffer, R.J. Husmann.
Quantitation of canine regulatory T cell populations, serum interleukin-10 and allergen-specific IgE concentrations in healthy control dogs and canine atopic dermatitis patients receiving allergen-specific immunotherapy.
Vet Immunol Immunopathol, 123 (2008), pp. 337-344
[94.]
B.A. Osborne, L.M. Minter.
Notch signalling during peripheral T-cell activation and differentiation.
Nat Rev Immunol, 7 (2007), pp. 64-75
[95.]
C.- T. Ong, J.R. Sedy, K.M. Murphy, R. Kopan.
Notch and presenilin regulate cellular expansion and cytokine secretion but cannot instruct Th1/Th2 fate acquisition.
[96.]
S.J. Bray.
Notch signalling: a simple pathway becomes complex.
Nat Rev Mol Cell Bio, 7 (2006), pp. 678-689
[97.]
S. Demehri, Z. Liu, J. Lee, M.H. Lin, S.D. Crosby, C.J. Roberts, et al.
Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity.
[98.]
C. Blanpain, W.E. Lowry, H.A. Passoli, E. Fuchs.
Canonical notch signalling functions as a commitment switch in the epidermal lineage.
Genes Dev, 20 (2006), pp. 3022-3035
[99.]
A. Al-Shami, R. Spolski, J. Kelly, A. Keane-Myers, W.J. Leonard.
A role for TSLP in the development of inflammation in an asthma model.
J Exp Med, 202 (2005), pp. 829-839
[100.]
Y.J. Liu.
Thymic stromal lymphopoietin: master switch for allergic inflammation.
J Exp Med, 203 (2006), pp. 269-273
[101.]
D.P. Huston, Y.J. Liu.
Thymic stromal lymphopoietin: a potential therapeutic target for allergy and asthma.
Curr Allergy Asthma Rep, 6 (2006), pp. 372-376
[102.]
Y.J. Liu, V. Soumelis, N. Watanabe, T. Ito, Y.H. Wang, W. Malefyt Rde, et al.
TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation.
Annu Rev Immunol, 25 (2007), pp. 193-219
[103.]
Y. Rochman, W.J. Leonard.
The role of thymic stromal lymphopoietin in CD8+ T cell homeostasis.
J Immunol, 181 (2008), pp. 7699-7705
[104.]
I. Rochman, N. Watanabe, K. Arima, Y.J. Liu, W.J. Leonard.
Cutting edge: direct action of thymic stromal lymphopoietin on activated human CD4+ T cells.
J Immunol, 178 (2007), pp. 6720-6724
[105.]
S. Demehri, M. Morimoto, M.J. Holtzman, R. Kopan.
Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma.
PLoS Biol, 7 (2009), pp. e1000067
[106.]
Z. Zhang, P. Hener, N. Frossard, S. Kato, D. Metzger, M. Li, et al.
Thymic stromal lymphopoietin overproduced by keratinocytes in mouse skin aggravates experimental asthma.
Proc Natl Acad Sci USA, 106 (2009), pp. 1536-1541
[107.]
E. Guttman-Yassky, M.A. Lowes, J. Fuentes-Duculan, J. Whynot, I. Novitskaya, I. Cardinale, et al.
Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis.
J Allergy Clin Immunol, 119 (2007), pp. 1210-1217
[108.]
D.Y. M. Leung, M. Boguniewicz, M.D. Howell, I. Nomura, Q.A. Hamid.
New insights in atopic dermatitis.
J Clin Invest, 113 (2004), pp. 651-657
[109.]
A.J. van Beelen, M.B. Teunissen, M.L. Kapsenberg, E.C. de Jong.
Interleukin-17 in inflammatory skin disorders.
Curr Opin Allergy Clin Immunol, 7 (2007), pp. 374-381
[110.]
E. Guttman-Yassky, M.A. Lowes, J. Fuentes-Duculan, L.C. Zaba, I. Cardinale, K.E. Nograles, et al.
Low expression of the IL-23/ Th17 pathway in atopic dermatitis compared to psoriasis.
J Immunol, 181 (2008), pp. 7420-7427
[111.]
C. Koga, K. Kabashima, N. Shiraishi, M. Kobayashi, Y. Tokura.
Possible pathogenic role of Th17 cells for atopic dermatitis.
J Invest Dermatol, 128 (2008), pp. 2625-2630
[112.]
J. Louten, K. Boniface, R. de Waal Malefyt.
Development and function of Th17 cells in health and disease.
J Allergy Clin Immunol, 123 (2009), pp. 1004-1011
[113.]
A. Di Cesare, P. Di Meglio, F.O. Nestle.
A role for Th17 cells in the immunopathogenesis of atopic dermatitis?.
J Invest Dermatol, 128 (2008), pp. 2569-2571
[114.]
K.E. Nograles, L.C. Zaba, A. Shemer, J. Fuentes-Duculan, I. Cardinale, T. Kikuchi, et al.
IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17- producing T(H)17T cells.
J Allergy Clin Immunol, 123 (2009), pp. 1244-1500
[115.]
S. Pastore, F. Mascia, G. Girolomoni.
The contribution of keratinocytes to the pathogenesis of atopic dermatitis.
Eur J Dermatol, 16 (2006), pp. 125-131
[116.]
N. Novak, W. Peng, C. Yu.
Network of myeloid and plasmacytoid dendritic cells in atopic dermatitis.
Adv Exp Med Biol, 601 (2007), pp. 97-104
[117.]
L.C. Zaba, J.G. Krueger, M.A. Lowes.
Resident and “inflammatory” dendritic cells in human skin.
J Invest Dermatol, 129 (2009), pp. 302-308
[118.]
L.M. Johnson-Huang, N.S. McNutt, J.G. Krueger, M.A. Lowes.
Cytokine-producing dendritic cells in the pathogenesis of inflammatory skin diseases.
J Clin Immunol, 29 (2009), pp. 247-256
[119.]
V. Dioszeghi, M. Rosas, B.H. Maskrey, C. Colmont, N. Topley, P. Chaitidis, et al.
12/15-Lipoxigenase regulates the inflammatory response to bacterial products in vivo.
J Immunol, 181 (2008), pp. 6514-6524
[120.]
Y. Cai, R.K. Kumar, J. Zhou, P.S. Foster, D.C. Webb.
Ym1/2 promotes Th2 cytokine expression by inhibiting 12/15(S)-lipoxygenase: identification of a novel pathway for regulating allergic inflammation.
J Immunol, 182 (2009), pp. 5393-5399
[121.]
P.M. Elias, M. Steinhoff.
“Outside-to-inside” (and now back to “outside”) pathogenic mechanisms in atopic dermatitis.
J Invest Dermatol, 128 (2008), pp. 1067-1070
[122.]
P.M. Elias.
Barrier repair trumps immunology in the pathogenesis and therapy of atopic dermatitis.
Drug Discov Today Dis Mech, 5 (2008), pp. e33-e48
[123.]
N. Novak, T. Bieber.
Allergic and nonallergic forms of atopic disease.
J Allergy Clin Immunol, 112 (2003), pp. 252-262
[124.]
V.G. Villarrubia, S. Vidal-Asensi, F. Borrego-Utiel, J.M. Gil-Cunquero, V. Pérez-Bañasco, R. Cisterna-Cáncer.
Una formulación estandarizada de aceites de oliva virgen extra orgánicos exhibe potentes efectos antimicrobianos in vitro, Implicaciones en Dermatología.
Rev Esp Quimioter, (2010),
[125.]
E. Elkord.
Role of regulatory T cells in allergy: implications for therapeutic strategy.
Inflamm Allergy Drug Targets, 5 (2006), pp. 211-217
[126.]
Y.J. Liu.
Thymic stromal lymphopoietin and OX40 ligand pathway in the initiation of dendritic cell-mediated allergic inflammation.
J Allergy Clin Immunol, 120 (2007), pp. 238-244
[127.]
V. Soumelis, P.A. Reche, H. Kanzler, W. Yuan, G. Edward, B. Homey, et al.
Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP.
Nat Immunol, 3 (2002), pp. 673-680
[128.]
S. Esnault, L.A. Rosenthal, D.- S. Wang, J.S. Malter.
Thymic stromal lymphopoietin (TSLP) as a bridge between infection and atopy.
Int J Clin Exp Pathol, 1 (2008), pp. 325-330
[129.]
S. Ebner, V.A. Nguyen, M. Forstner, Y.H. Wang, D. Wolfram, Y.J. Liu, et al.
Thymic stromal lymphopoietin converts human epidermal Langerhans cells into antigen-presenting cells that induce proallergic T cells.
J Allergy Clin Immunol, 119 (2007), pp. 982-990
[130.]
Y. Torii, T. Ito, R. Amakawa, H. Sugimoto, H. Amuro, T. Tanijiri, et al.
Imidazoquinoline acts as immune adjuvant for functional alteration of thymic stroma lymphopoietin-mediated allergic T cell response.
J Immunol, 181 (2008), pp. 5340-5349
[131.]
T. Yokoi, R. Amakawa, T. Tanijiri, H. Sugimoto, Y. Torii, H. Amuro, et al.
Mycobacterium bovis Bacillus Calmette-Guérin suppresses inflammatory Th2 responses by inducing functional alteration of TSLP-activated dendritic cells.
Int Immunol, 20 (2008), pp. 1321-1329
[132.]
A. D’Andrea, M. Aste-Amegaza, N.M. Valiante, X. Ma, M. Kubin, G. Trinchieri.
Interleukin 10 (IL-10) inhibits human lymphocyte interferon g production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells.
J Exp Med, 178 (1993), pp. 1041-1048
[133.]
G. Abboud, D. Staumont-Sallé, A. Kanda, T. Rounier, N. Deruytter, C. Lavogiez, et al.
Fc(epsilon)RI and FcgammaRIII/CD16 differentially regulate atopic dermatitis in mice.
J Immunol, 182 (2009), pp. 6517-6526
[134.]
C. Bussmann, L. Maintz, J. Hart, J.P. Allam, S. Vrtala, K.W. Chen, et al.
Clinical improvement and immunological changes in atopic dermatitis patients undergoing subcutaneous immunotherapy with a house dust mite allergoid: a pilot study.
Clin Exp Allergy, 37 (2007), pp. 1277-1285
[135.]
C. Schnoeller, S. Rausch, S. Pillai, A. Avagyan, B.M. Wittig, C. Loddenkemper, et al.
A helminth immunomodulator reduces allergic and inflammatory responses by induction of IL-10- producing macrophages.
J Immunol, 180 (2008), pp. 4265-4272
[136.]
K. Nakagome, M. Dohi, K. Okunishi, Y. Komagata, K. Nagatani, R. Tanaka, et al.
In vivo IL-10 gene delivery suppresses airway eosinophilia and hyperreactivity by down-regulating APC functions and migration without impairing the antigenspecific systemic immune response in a mouse model of allergic airway inflammation.
J Immunol, 174 (2005), pp. 6955-6966
[137.]
G. Herberth, J. Heinrich, S. Röder, A. Figi, M. Weiss, U. Diez, et al.
Reduced IFN-gamma- and enhanced IL-4 producing CD4 cord blood T cells are associated with a higher risk for atopic dermatitis during the first 2yr of life.
Pediatr Allergy Immunol, 21 (2010), pp. 5-13
[138.]
E. Machura, B. Mazur, E. Golemiec, M. Pindel, F. Halkiewicz.
Staphylococcus aureus skin colonization in atopic dermatitis children is associated with decreased IFN-gamma production by peripheral blood CD4+ and CD8+ T cells.
Pediatr Allergy Immunol, 19 (2008), pp. 37-45
[139.]
Y.F. Guan, M.D. Breyer.
Peroxisome proliferator-activated receptors (PPAR): Novel therapeutic targets in renal disease.
[140.]
V.G. Villarrubia, J.M. Gil-Cunquero, V. Pérez Bañasco.
Trombosis del acceso vascular en pacientes hemodializados. Racional para el uso del aceite de oliva.
Nefrologia, 27 (2007), pp. 122-133
[141.]
K. Asadullah, M. Friederich, S. Hanneken, C. Rohrbach, H. Audring, A. Vergopoulos, et al.
Effects of systemic interleukin-10 therapy on psoriatic skin lesions: histologic, immunohistologic, and molecular biology findings.
J Invest Dermatol, 116 (2001), pp. 721-727
[142.]
M. Friederich, W.D. Döcke, A. Klein, S. Phillips, H.D. Volk, W. Sterry, et al.
Immunomodulation by imterleukin-10 therapy decreases the incidence of relapse and prolongs the relapsefree interval in Psoriasis.
J Invest Dermatol, 118 (2002), pp. 672-677
[143.]
K. Asadullah, W.D. Döcke, R.V. Sabat, H.D. Volk, W. Sterry.
The treatment of psoriasis with IL-10: rationale and review of the first clinical trials.
Expert Opin Investig Drugs, 9 (2000), pp. 95-102
[144.]
W.D. Döcke, K. Asadullah, G. Belbe, M. Ebeling, C. Höflich, M. Friederich, et al.
Comprehensive biomarker monitoring in cytokine therapy: heterogeneous, time-dependent, and persisting immune effects of interleukin-10 application in psoriasis.
J Leukoc Biol, 85 (2009), pp. 582-593
[145.]
P.M. Elias.
An appropriate response to the black-box warning: corrective, barrier repair therapy in atopic dermatitis.
Clin Med Dermatol, 2 (2009), pp. 1-3
[146.]
M. Kim, M. Jung, S.P. Hong, H. Jeon, M.J. Kim, M.Y. Cho, et al.
Topical calcineurin inhibitors compromise stratum corneum integrity, epidermal permeability and antimicrobial barrier function.
Exp Dermatol, (2009),
[147.]
L. Suh, S. Coffin, K.H. Leckerman, J.M. Gelfand, P.J. Honig, A.C. Yan.
Methicillin-resistant Staphylococcus aureus colonization in children with atopic dermatitis.
Pediatr Dermatol, 25 (2008), pp. 528-534
[148.]
Y. Hatano, H. Terashi, S. Arakawa, K. Katagiri.
Interleukin-4 suppresses the enhancement of ceramide synthesis and cutaneous permeability barrier functions induced by TN F-a and IFN-g in human epidermis.
J Invest Dermatol, 124 (2005), pp. 786-792
[149.]
M. Noh, H. Yeo, J. Ko, H.K. Kim, C.H. Lee.
MAP17 is associated with the T-helper cell cytokine-induced down-regulation of filaggrin transcription in human keratinocytes.
Exp Dermatol, 19 (2010), pp. 355-362
[150.]
M.V. Guijarro, J.F. Leal, C. Blanco-Aparicio, S. Alonso, J. Fominaya, M. Lleonart, et al.
MAP17 enhances the malignant behavior of tumor cells ROS increase.
Carcinogenesis, 28 (2007), pp. 2096-2104
[151.]
D.L. Silver, N. Wang, S. Vogel.
Identification of small PDZK1- associated protein. DD96/MAP17, as a regulator of PDZK1 and plasma high density lipoprotein levels.
J Biol Chem, 278 (2003), pp. 28528-28532
[152.]
T.M. McKeever, S.A. Lewis, H. Smith, P. Burney, J. Britton, P.A. Cassano.
Serum nutrient markers and skin prick testing using data from the Third National Health and Nutrition Examination Survey.
J Allergy Clin Immunol, 114 (2004), pp. 1398-1402
[153.]
F. Ouyang, R. Kumar, J. Pongracic, R.E. Story, X. Liu, B. Wang, et al.
Adiposity, serum lipid levels, and allergic sensitization in Chinese men and women.
J Allergy Clin Immunol, 123 (2009), pp. 940-948
[154.]
J.M. Gelfand, A.L. Neimann, D.B. Shin, X. Wang, D.J. Margolis, A.B. Troxel.
Risk of myocardial infarction in patients with psoriasis.
JAMA, 296 (2006), pp. 1735-1741
[155.]
J. Dreiher, D. Weitzman, B. Davidovici, J. Shapiro, A.D. Cohen.
Psoriasis and dyslipidemia: a population-based study.
Acta Derm Venereol, 88 (2008), pp. 561-565
Copyright © 2010. Academia Española de Dermatología y Venereología and Elsevier España, S.L.
Download PDF
Idiomas
Actas Dermo-Sifiliográficas
Article options
Tools
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?