was read the article
array:25 [ "pii" => "S1578219020300846" "issn" => "15782190" "doi" => "10.1016/j.adengl.2019.09.003" "estado" => "S300" "fechaPublicacion" => "2020-05-01" "aid" => "2295" "copyright" => "AEDV" "copyrightAnyo" => "2020" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Actas Dermosifiliogr. 2020;111:313-6" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "es" => array:20 [ "pii" => "S0001731020300041" "issn" => "00017310" "doi" => "10.1016/j.ad.2019.09.002" "estado" => "S300" "fechaPublicacion" => "2020-05-01" "aid" => "2295" "copyright" => "AEDV" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Actas Dermosifiliogr. 2020;111:313-6" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "es" => array:12 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">ORIGINAL</span>" "titulo" => "Uso del aprendizaje automático en el diagnóstico del melanoma. Limitaciones por superar" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "313" "paginaFinal" => "316" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Machine Learning in Melanoma Diagnosis. Limitations About to be Overcome" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "C. González-Cruz, M.A. Jofre, S. Podlipnik, M. Combalia, D. Gareau, M. Gamboa, M.G. Vallone, Z. Faride Barragán-Estudillo, A.L. Tamez-Peña, J. Montoya, M. América Jesús-Silva, C. Carrera, J. Malvehy, S. Puig" "autores" => array:14 [ 0 => array:2 [ "nombre" => "C." "apellidos" => "González-Cruz" ] 1 => array:2 [ "nombre" => "M.A." "apellidos" => "Jofre" ] 2 => array:2 [ "nombre" => "S." "apellidos" => "Podlipnik" ] 3 => array:2 [ "nombre" => "M." "apellidos" => "Combalia" ] 4 => array:2 [ "nombre" => "D." "apellidos" => "Gareau" ] 5 => array:2 [ "nombre" => "M." "apellidos" => "Gamboa" ] 6 => array:2 [ "nombre" => "M.G." "apellidos" => "Vallone" ] 7 => array:2 [ "nombre" => "Z." "apellidos" => "Faride Barragán-Estudillo" ] 8 => array:2 [ "nombre" => "A.L." "apellidos" => "Tamez-Peña" ] 9 => array:2 [ "nombre" => "J." "apellidos" => "Montoya" ] 10 => array:2 [ "nombre" => "M." "apellidos" => "América Jesús-Silva" ] 11 => array:2 [ "nombre" => "C." "apellidos" => "Carrera" ] 12 => array:2 [ "nombre" => "J." "apellidos" => "Malvehy" ] 13 => array:2 [ "nombre" => "S." "apellidos" => "Puig" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S1578219020300846" "doi" => "10.1016/j.adengl.2019.09.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219020300846?idApp=UINPBA000044" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020300041?idApp=UINPBA000044" "url" => "/00017310/0000011100000004/v3_202009220625/S0001731020300041/v3_202009220625/es/main.assets" ] ] "itemSiguiente" => array:20 [ "pii" => "S1578219020300810" "issn" => "15782190" "doi" => "10.1016/j.adengl.2018.09.024" "estado" => "S300" "fechaPublicacion" => "2020-05-01" "aid" => "2299" "copyright" => "AEDV" "documento" => "simple-article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "crp" "cita" => "Actas Dermosifiliogr. 2020;111:317-8" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:11 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Practical Dermoscopy</span>" "titulo" => "Progressive Orange Lesions on the Scalp" "tienePdf" => "en" "tieneTextoCompleto" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "317" "paginaFinal" => "318" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Lesiones anaranjadas de aparición progresiva en cuero cabelludo" ] ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1016 "Ancho" => 800 "Tamanyo" => 130858 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Orange nodule with an erythematous base on the scalp.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "V.A. Gonzalez-Delgado, P. Cordero-Romero, J.M. Martín" "autores" => array:3 [ 0 => array:2 [ "nombre" => "V.A." "apellidos" => "Gonzalez-Delgado" ] 1 => array:2 [ "nombre" => "P." "apellidos" => "Cordero-Romero" ] 2 => array:2 [ "nombre" => "J.M." "apellidos" => "Martín" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0001731020300089" "doi" => "10.1016/j.ad.2018.09.026" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020300089?idApp=UINPBA000044" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219020300810?idApp=UINPBA000044" "url" => "/15782190/0000011100000004/v1_202006060751/S1578219020300810/v1_202006060751/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S1578219020301037" "issn" => "15782190" "doi" => "10.1016/j.adengl.2019.09.004" "estado" => "S300" "fechaPublicacion" => "2020-05-01" "aid" => "2296" "documento" => "article" "crossmark" => 1 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Actas Dermosifiliogr. 2020;111:306-12" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:14 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Extramammary Paget Disease" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:3 [ 0 => "en" 1 => "en" 2 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "306" "paginaFinal" => "312" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Enfermedad de Paget extramamaria" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 1 "multimedia" => array:5 [ "identificador" => "fig0015" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => false "mostrarDisplay" => true "figura" => array:1 [ 0 => array:4 [ "imagen" => "fx1.jpeg" "Alto" => 947 "Ancho" => 1333 "Tamanyo" => 169641 ] ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "J. Marcoval, R.M. Penín, A. Vidal, J. Bermejo" "autores" => array:4 [ 0 => array:2 [ "nombre" => "J." "apellidos" => "Marcoval" ] 1 => array:2 [ "nombre" => "R.M." "apellidos" => "Penín" ] 2 => array:2 [ "nombre" => "A." "apellidos" => "Vidal" ] 3 => array:2 [ "nombre" => "J." "apellidos" => "Bermejo" ] ] ] ] "resumen" => array:1 [ 0 => array:3 [ "titulo" => "Graphical abstract" "clase" => "graphical" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall"><elsevierMultimedia ident="fig0015"></elsevierMultimedia></p></span>" ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0001731020300053" "doi" => "10.1016/j.ad.2019.09.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731020300053?idApp=UINPBA000044" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219020301037?idApp=UINPBA000044" "url" => "/15782190/0000011100000004/v1_202006060751/S1578219020301037/v1_202006060751/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Machine Learning in Melanoma Diagnosis. Limitations About to be Overcome" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "313" "paginaFinal" => "316" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "C. González-Cruz, M.A. Jofre, S. Podlipnik, M. Combalia, D. Gareau, M. Gamboa, M.G. Vallone, Z. Faride Barragán-Estudillo, A.L. Tamez-Peña, J. Montoya, M. América Jesús-Silva, C. Carrera, J. Malvehy, S. Puig" "autores" => array:14 [ 0 => array:3 [ "nombre" => "C." "apellidos" => "González-Cruz" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 1 => array:3 [ "nombre" => "M.A." "apellidos" => "Jofre" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "S." "apellidos" => "Podlipnik" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 3 => array:3 [ "nombre" => "M." "apellidos" => "Combalia" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 4 => array:3 [ "nombre" => "D." "apellidos" => "Gareau" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 5 => array:3 [ "nombre" => "M." "apellidos" => "Gamboa" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 6 => array:3 [ "nombre" => "M.G." "apellidos" => "Vallone" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 7 => array:3 [ "nombre" => "Z." "apellidos" => "Faride Barragán-Estudillo" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 8 => array:3 [ "nombre" => "A.L." "apellidos" => "Tamez-Peña" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 9 => array:3 [ "nombre" => "J." "apellidos" => "Montoya" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 10 => array:3 [ "nombre" => "M." "apellidos" => "América Jesús-Silva" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] ] ] 11 => array:3 [ "nombre" => "C." "apellidos" => "Carrera" "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 12 => array:3 [ "nombre" => "J." "apellidos" => "Malvehy" "referencia" => array:3 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 13 => array:4 [ "nombre" => "S." "apellidos" => "Puig" "email" => array:2 [ 0 => "susipuig@gmail.com" 1 => "susipuig@gmail.com" ] "referencia" => array:4 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] 2 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] 3 => array:2 [ "etiqueta" => "*" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:4 [ 0 => array:3 [ "entidad" => "Servicio de Dermatología, Hospital Clínic de Barcelona, Barcelona, Spain" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Institut d’Investigacions Biomediques August Pi I Sunyer (IDIBAPS), Barcelona, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "CIBER en Enfermedades raras, Instituto de Salud Carlos III, Barcelona, Spain" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Laboratory of Investigative Dermatology, The Rockefeller University, Nueva York, USA" "etiqueta" => "d" "identificador" => "aff0020" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Uso del aprendizaje automático en el diagnóstico del melanoma. Limitaciones por superar" ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Automated image classification by pattern recognition is a branch of machine learning (ML) which offers the dermatologist a useful tool for assessment in the diagnosis of skin cancer.<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">1</span></a> Deep convolutional neural networks (DCNN) have dramatically improved accuracy in feature learning and object classification<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">2</span></a> and have been successfully used in the classification of dermoscopic images of skin lesions.<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">3</span></a> However, the selection of images may include certain special features which prevent its universal use at the present time. In this study we assessed some exclusion criteria in the selection of skin cancer images (with an emphasis on melanoma) for ML analysis, according to recent works in this field.<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">1,4,5</span></a></p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Materials and Methods</span><p id="par0010" class="elsevierStylePara elsevierViewall">This study was conducted in a tertiary academic skin cancer center in Barcelona, Spain. A retrospective cohort study was designed including 2,849 consecutive high-quality dermoscopy images of skin tumors from the Melanoma Unit database from 2010 to 2014. The DermLite® photo digital epiluminescence microscopy system 3Gen with 37<span class="elsevierStyleHsp" style=""></span>mm thread size and a Canon camera, model G16 were used. Pathological diagnosis was available for 2,429 images. Finally, the images were assorted according to their theoretical eligibility for ML analysis, pursuant to some potential exclusion criteria<a class="elsevierStyleCrossRefs" href="#bib0045"><span class="elsevierStyleSup">1,4,5</span></a>: difficulty in lesion border detection (absence of pigmentation, absence of normal surrounding skin, presence of hair, location on volar skin), metastasis or an ulcerated lesion.</p><p id="par0015" class="elsevierStylePara elsevierViewall">This study has been approved by the institutional review board. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Results</span><p id="par0020" class="elsevierStylePara elsevierViewall">Out of the 2,849 images from our database, 968 (34%) were selectable as they did not have any potential exclusion criteria for analysis by a ML system. Nevi, melanoma and basal cell carcinoma were the most frequent lesions in our database. Only 64.7% of nevi and 36.6% of melanoma did not have any potential exclusion criteria (<a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>).</p><p id="par0025" class="elsevierStylePara elsevierViewall">Of 528 melanomas, 335 (63.4%) could potentially be excluded. An absence of normal surrounding skin (40.5% of all melanomas) and absence of pigmentation (14.2%) were the most common reasons for exclusion from ML analysis. Other reasons for exclusion are shown in <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a>.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Discussion</span><p id="par0030" class="elsevierStylePara elsevierViewall">Melanoma accounts for the majority of skin cancer deaths. Early diagnosis and treatment significantly improves its prognosis. The development of an effective screening method is needed and automated image classification by pattern recognition may achieve diagnostic accuracy similar to expert dermatologist.<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">6</span></a> However, some limitations have to be overcome. One of these is the exclusion criteria in the selection of skin cancer images. While solely high-quality dermoscopy images were selected from our database, only 34% did not have any potential exclusion criteria for classification by most state-of-the-art ML algorithms. Moreover, 63.4% of our melanomas had at least one of the potential exclusion criteria mentioned above. This considerably decreases diagnostic accuracy and utility of some ML systems. Large lesions are a serious problem for ML algorithms, as they do not fit within the diameter of the majority of dermoscopy lenses, and this renders all the state-of-the-art systems which need to pre-compute lesion segmentation.<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">1</span></a> Even if some works have proposed hair detection/removal methods,<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">5</span></a> most ML systems’ performance is deteriorated by its presence. Since most dermoscopy datasets for algorithm training don’t include volar skin lesions, the systems trained on these won’t be able to correctly classify acral lesions. Nevertheless, the artificial intelligence community is rapidly moving to overcome these nuances. Yu et al.<a class="elsevierStyleCrossRef" href="#bib0075"><span class="elsevierStyleSup">7</span></a> published recently a work where DCNN was used for acral melanoma and nevus classification. In this work we consider the limitations of most but not all ML systems.</p><p id="par0035" class="elsevierStylePara elsevierViewall">Our study shows that the main potential exclusion criteria were the absence of normal surrounding skin and the absence of pigmentation. Many melanomas developed in sun-damaged skin with abnormal surrounding skin, which makes them unsuitable for analysis by most of the current ML systems due to difficulties in lesion border detection.<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">5</span></a> Moreover, amelanotic melanoma which accounts for 2%–8% of all melanomas<a class="elsevierStyleCrossRef" href="#bib0080"><span class="elsevierStyleSup">8</span></a> cannot yet be diagnosed by most current ML systems. This could be addressed by designing ML systems which are able to work with images which do not contain the entire lesion and increasing the dataset size, selecting a higher number of representative dermoscopy images.</p><p id="par0040" class="elsevierStylePara elsevierViewall">In conclusion, we consider that ML systems, especially those based in the new developments in the deep learning field will not only convert ML into a valuable tool for the dermatologist but also for the general population. However, these systems are able to overcome some limitations to enlarge spectrum of measurable images. It is clear though that researchers are moving forward towards this direction, since some of the exclusion criteria mentioned in this work have already been overcome by recent algorithms included in the ISIC International Symposium.<a class="elsevierStyleCrossRef" href="#bib0055"><span class="elsevierStyleSup">3</span></a></p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Funding/Support</span><p id="par0045" class="elsevierStylePara elsevierViewall">The study in the Melanoma Unit, Hospital Clínic, Barcelona was supported in part by grants from <span class="elsevierStyleGrantSponsor" id="gs1">Fondo de Investigaciones Sanitarias</span> P.I. 12/00840, PI15/00956 and PI15/00716 Spain; by the <span class="elsevierStyleGrantSponsor" id="gs2">CIBER de Enfermedades Raras of the Instituto de Salud Carlos III</span>, Spain, co-funded by “Fondo Europeo de Desarrollo Regional (FEDER). Unión Europea. Una manera de hacer Europa”; by the AGAUR 2014_SGR_603 and 2017_SGR_1134 of the Catalan Government, Spain; by a grant from “<span class="elsevierStyleGrantSponsor" id="gs3">Fundació La Marató de TV3</span>, <span class="elsevierStyleGrantNumber" refid="gs3">201331-30</span>”, Catalonia, Spain; by the European Commission under the 6th Framework Programme, Contract n°: LSHC-CT-2006-018702 (GenoMEL); by CERCA Programme/Generalitat de Catalunya and by a Research Grant from “<span class="elsevierStyleGrantSponsor" id="gs4">Fundación Científica de la Asociación Española Contra el Cáncer</span>” GCB15152978SOEN, Spain. Part of the work was developed at the building Centro Esther Koplowitz, Barcelona.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0100">Conflicts of Interest</span><p id="par0050" class="elsevierStylePara elsevierViewall">The authors declare that they have no conflicts of interest</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres1344889" "titulo" => "Abstract" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Background" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Objective" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Methods" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Results" ] 4 => array:2 [ "identificador" => "abst0025" "titulo" => "Discussion" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1237569" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1344888" "titulo" => "Resumen" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "abst0030" "titulo" => "Antecedentes" ] 1 => array:2 [ "identificador" => "abst0035" "titulo" => "Objetivo" ] 2 => array:2 [ "identificador" => "abst0040" "titulo" => "Métodos" ] 3 => array:2 [ "identificador" => "abst0045" "titulo" => "Resultados" ] 4 => array:2 [ "identificador" => "abst0050" "titulo" => "Discusión" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1237570" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Materials and Methods" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Results" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "Discussion" ] 8 => array:2 [ "identificador" => "sec0025" "titulo" => "Funding/Support" ] 9 => array:2 [ "identificador" => "sec0030" "titulo" => "Conflicts of Interest" ] 10 => array:2 [ "identificador" => "xack465618" "titulo" => "Acknowledgements" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2019-08-11" "fechaAceptado" => "2019-09-16" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1237569" "palabras" => array:7 [ 0 => "Melanoma" 1 => "Skin cancer" 2 => "Dermoscopy" 3 => "Image classification" 4 => "Machine learning" 5 => "Artificial intelligence" 6 => "Convolutional neural networks" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1237570" "palabras" => array:7 [ 0 => "Melanoma" 1 => "Cáncer de piel" 2 => "Dermatoscopia" 3 => "Clasificación de imágenes" 4 => "Aprendizaje automático" 5 => "Inteligencia artificial" 6 => "Redes neuronales convolucionales" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Background</span><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Automated image classification is a promising branch of machine learning (ML) useful for skin cancer diagnosis, but little has been determined about its limitations for general usability in current clinical practice.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Objective</span><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">To determine limitations in the selection of skin cancer images for ML analysis, particularly in melanoma.</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Methods</span><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Retrospective cohort study design, including 2,849 consecutive high-quality dermoscopy images of skin tumors from 2010 to 2014, for evaluation by a ML system. Each dermoscopy image was assorted according to its eligibility for ML analysis.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Results</span><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Of the 2,849 images chosen from our database, 968 (34%) met the inclusion criteria for analysis by the ML system. Only 64.7% of nevi and 36.6% of melanoma met the inclusion criteria. Of the 528 melanomas, 335 (63.4%) were excluded. An absence of normal surrounding skin (40.5% of all melanomas from our database) and absence of pigmentation (14.2%) were the most common reasons for exclusion from ML analysis.</p></span> <span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Discussion</span><p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Only 36.6% of our melanomas were admissible for analysis by state-of-the-art ML systems. We conclude that future ML systems should be trained on larger datasets which include relevant non-ideal images from lesions evaluated in real clinical practice. Fortunately, many of these limitations are being overcome by the scientific community as recent works show.</p></span>" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Background" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Objective" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Methods" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Results" ] 4 => array:2 [ "identificador" => "abst0025" "titulo" => "Discussion" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Antecedentes</span><p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">La clasificación automática de imágenes es una rama prometedora del aprendizaje automático (de sus siglas en inglés Machine Learning [ML]), y es una herramienta útil en el diagnóstico de cáncer de piel. Sin embargo, poco se ha estudiado acerca de las limitaciones de su uso en la práctica clínica diaria.</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Objetivo</span><p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Determinar las limitaciones que existen en cuanto a la selección de imágenes usadas para el análisis por ML de las neoplasias cutáneas, en particular del melanoma.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Métodos</span><p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Se diseñó un estudio de cohorte retrospectivo, donde se incluyeron de forma consecutiva 2.849 imágenes dermatoscópicas de alta calidad de tumores cutáneos para su valoración por un sistema de ML, recogidas entre los años 2010 y 2014. Cada imagen dermatoscópica fue clasificada según las características de elegibilidad para el análisis por ML.</p></span> <span id="abst0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Resultados</span><p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">De las 2.849 imágenes elegidas a partir de nuestra base de datos, 968 (34%) cumplieron los criterios de inclusión. De los 528 melanomas, 335 (63,4%) fueron excluidos. La ausencia de piel normal circundante (40,5% de todos los melanomas de nuestra base de datos) y la ausencia de pigmentación (14,2%) fueron las causas más frecuentes de exclusión para el análisis por ML.</p></span> <span id="abst0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Discusión</span><p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Solo el 36,6% de nuestros melanomas se consideraron aceptables para el análisis por sistemas de ML de última generación. Concluimos que los futuros sistemas de ML deberán ser entrenados a partir de bases de datos más grandes que incluyan imágenes representativas de la práctica clínica habitual. Afortunadamente, muchas de estas limitaciones están siendo superadas gracias a los avances realizados recientemente por la comunidad científica, como se ha demostrado en trabajos recientes.</p></span>" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "abst0030" "titulo" => "Antecedentes" ] 1 => array:2 [ "identificador" => "abst0035" "titulo" => "Objetivo" ] 2 => array:2 [ "identificador" => "abst0040" "titulo" => "Métodos" ] 3 => array:2 [ "identificador" => "abst0045" "titulo" => "Resultados" ] 4 => array:2 [ "identificador" => "abst0050" "titulo" => "Discusión" ] ] ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: González-Cruz C, Jofre MA, Podlipnik S, Combalia M, Gareau D, Gamboa M, et al. Uso del aprendizaje automático en el diagnóstico del melanoma. Limitaciones por superar. Actas Dermosifiliogr. 2020;111:313–316.</p>" ] ] "multimedia" => array:1 [ 0 => array:8 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at1" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:2 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Had Any Potential Exclusion Criteria (% From Total by Location or Diagnosis)</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Had Not Any Potential Exclusion Criteria (% From Total by Location or Diagnosis)</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Total \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Location</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Head and neck \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">633 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(76.8%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">191 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(23.2%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">824 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Upper limbs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">159 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(62.1%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">97 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(37.9%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">256 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Lower limbs \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">297 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(60.4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">195 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(39.6%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">492 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Volar skin \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">62 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(100%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(0%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">62 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Trunk \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">538 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(53.1%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">475 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(46.9%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">1013 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Mucosa \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">15 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(83.3%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">3 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(16.7%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">18 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Other \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">149 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(81%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">35 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(19%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">184 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Diagnosis</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Basal cell carcinoma \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">295 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(69.6%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">129 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(30.4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">424 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Squamous cell carcinoma \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">59 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(89.4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">7 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(10.6%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">66 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Scar \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">21 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(77.8%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(22.2%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">27 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Dermatofibroma \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">17 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(77.3%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(22.7%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">22 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Lentigo \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">26 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(66.7%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">13 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(33.3%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">39 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="6" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleVsp" style="height:0.5px"></span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Melanoma \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">335 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(63.4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">193 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(36.6%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">528 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Cutaneous metastasis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(100%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">0 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">9 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Nevus \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">256 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(35.3%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">470 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(64.7%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">726 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Actinic Keratosis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">137 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(78.3%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">38 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(21.7%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">175 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Seborrheic Keratosis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">95 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(67.9%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">45 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(32.1%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">140 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Other \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">225 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(82.4%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">48 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">(17.6%) \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">273 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Pathological diagnosis NA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">– \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">420 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2307222.png" ] ] 1 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">B. Reasons for Exclusion</th></tr><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Melanoma \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Number of Excluded (% From Total Melanoma) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">Reasons for exclusion</span></td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Absence of pigmentation \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">75 (14.2%) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Absence of normal surrounding skin \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">214 (40.5%) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Presence of hair \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">28 (5.3%) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Metastasis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">29 (5.5%) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Location on volar skin \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">23 (4.4%) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleHsp" style=""></span>Ulcerated lesion \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">19 (3.6%) \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2307223.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">A. Images Chosen for Analysis by ML. Location and Diagnosis.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0015" "bibliografiaReferencia" => array:8 [ 0 => array:3 [ "identificador" => "bib0045" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Digital imaging biomarkers feed machine learning for melanoma screening" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D.S. Gareau" 1 => "J. Correa da Rosa" 2 => "S. Yagerman" 3 => "J.A. Carucci" 4 => "N. Gulati" 5 => "F. Hueto" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/exd.13250" "Revista" => array:6 [ "tituloSerie" => "Exp Dermatol" "fecha" => "2017" "volumen" => "26" "paginaInicial" => "615" "paginaFinal" => "618" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27783441" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0050" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y. Fujisawa" 1 => "Y. Otomo" 2 => "Y. Ogata" 3 => "Y. Nakamura" 4 => "R. Fujita" 5 => "Y. Ishitsuka" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/bjd.16924" "Revista" => array:2 [ "tituloSerie" => "Br J Dermatol" "fecha" => "2018." ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0055" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.A. Marchetti" 1 => "N.C.F. Codella" 2 => "S.W. Dusza" 3 => "D.A. Gutman" 4 => "B. Helba" 5 => "A. Kalloo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jaad.2017.08.016" "Revista" => array:6 [ "tituloSerie" => "J Am Acad Dermatol" "fecha" => "2018" "volumen" => "78" "paginaInicial" => "270" "paginaFinal" => "277" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28969863" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0060" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P. Tschandl" 1 => "C. Rosendahl" 2 => "H. Kittler" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/sdata.2018.161" "Revista" => array:4 [ "tituloSerie" => "Sci Data" "fecha" => "2018" "volumen" => "5" "paginaInicial" => "180161" ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0065" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A state-of-the-art survey on lesion border detection in dermoscopy images" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "M. Celebi" 1 => "Q. Wen" 2 => "H. Iyatomi" 3 => "K. Shimizu" 4 => "H. Zhou" 5 => "G. Schaefer" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "LibroEditado" => array:3 [ "editores" => "M.E.Celebi, T.Mendonca, J.Marques" "titulo" => "Dermoscopy image analysis" "serieFecha" => "2015" ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0070" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dermatologist-level classification of skin cancer with deep neural networks" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "A. Esteva" 1 => "B. Kuprel" 2 => "R.A. Novoa" 3 => "J. Ko" 4 => "S.M. Swetter" 5 => "H.M. Blau" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature21056" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2017" "volumen" => "542" "paginaInicial" => "115" "paginaFinal" => "118" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28117445" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0075" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Acral melanoma detection using a convolutional neural network for dermoscopy images" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C. Yu" 1 => "S. Yang" 2 => "W. Kim" 3 => "J. Jung" 4 => "K.Y. Chung" 5 => "S.W. Lee" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0193321" "Revista" => array:5 [ "tituloSerie" => "PLoS One" "fecha" => "2018" "volumen" => "13" "paginaInicial" => "e0193321" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29513718" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0080" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dermoscopic diagnosis of amelanotic/hypomelanotic melanoma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "M.A. Pizzichetta" 1 => "H. Kittler" 2 => "I. Stanganelli" 3 => "G. Ghigliotti" 4 => "M.T. Corradin" 5 => "P. Rubegni" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/bjd.15093" "Revista" => array:6 [ "tituloSerie" => "Br J Dermatol" "fecha" => "2017" "volumen" => "177" "paginaInicial" => "538" "paginaFinal" => "540" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27681347" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack465618" "titulo" => "Acknowledgements" "texto" => "<p id="par0055" class="elsevierStylePara elsevierViewall">Thanks to our patients and their families who are the main reason for our studies; to nurses from the Melanoma Unit of Hospital Clínic of Barcelona, Daniel Gabriel, Pablo Iglesias and Maria E Moliner for helping to collect patient data and to Paul Hetherington for helping with English editing and correction of the manuscript.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/15782190/0000011100000004/v1_202006060751/S1578219020300846/v1_202006060751/en/main.assets" "Apartado" => array:4 [ "identificador" => "6155" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original Articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/15782190/0000011100000004/v1_202006060751/S1578219020300846/v1_202006060751/en/main.pdf?idApp=UINPBA000044&text.app=https://actasdermo.org/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219020300846?idApp=UINPBA000044" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 4 | 1 | 5 |
2024 October | 78 | 40 | 118 |
2024 September | 73 | 23 | 96 |
2024 August | 95 | 66 | 161 |
2024 July | 66 | 32 | 98 |
2024 June | 97 | 45 | 142 |
2024 May | 96 | 39 | 135 |
2024 April | 92 | 23 | 115 |
2024 March | 98 | 31 | 129 |
2024 February | 72 | 26 | 98 |
2024 January | 72 | 32 | 104 |
2023 December | 61 | 26 | 87 |
2023 November | 80 | 25 | 105 |
2023 October | 67 | 34 | 101 |
2023 September | 64 | 30 | 94 |
2023 August | 44 | 26 | 70 |
2023 July | 54 | 34 | 88 |
2023 June | 44 | 21 | 65 |
2023 May | 51 | 20 | 71 |
2023 April | 34 | 18 | 52 |
2023 March | 66 | 24 | 90 |
2023 February | 50 | 27 | 77 |
2023 January | 45 | 34 | 79 |
2022 December | 43 | 53 | 96 |
2022 November | 32 | 38 | 70 |
2022 October | 32 | 24 | 56 |
2022 September | 23 | 39 | 62 |
2022 August | 23 | 50 | 73 |
2022 July | 19 | 44 | 63 |
2022 June | 20 | 26 | 46 |
2022 May | 71 | 52 | 123 |
2022 April | 81 | 51 | 132 |
2022 March | 66 | 60 | 126 |
2022 February | 68 | 39 | 107 |
2022 January | 116 | 65 | 181 |
2021 December | 108 | 64 | 172 |
2021 November | 87 | 49 | 136 |
2021 October | 78 | 55 | 133 |
2021 September | 38 | 40 | 78 |
2021 August | 47 | 23 | 70 |
2021 July | 27 | 25 | 52 |
2021 June | 44 | 29 | 73 |
2021 May | 35 | 42 | 77 |
2021 April | 92 | 73 | 165 |
2021 March | 61 | 22 | 83 |
2021 February | 51 | 40 | 91 |
2021 January | 55 | 19 | 74 |
2020 December | 33 | 11 | 44 |
2020 November | 26 | 21 | 47 |
2020 October | 18 | 6 | 24 |
2020 September | 41 | 20 | 61 |
2020 August | 39 | 18 | 57 |
2020 July | 68 | 26 | 94 |
2020 June | 70 | 27 | 97 |
2020 May | 48 | 25 | 73 |
2020 April | 3 | 3 | 6 |