

Original Article

Cost-consequence Analysis of Secukinumab vs Adalimumab in Moderate-to-severe Hidradenitis Suppurativa

Q1 A. Martorell Calatayud^a, A. Molina-Leyva^b, A. Jiménez Morales^c, C. Blanch^d

^a Department of Dermatology, Hospital de Manises, Valencia, Spain

^b Dermatology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain

^c Pharmacy Service, University Hospital Virgen de las Nieves, Granada, Spain

^d Novartis, Barcelona, Spain

ARTICLE INFO

Keywords:

Hidradenitis suppurativa
Biological treatment
Costs

ABSTRACT

Background and objective: Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease. Treatment for moderate-to-severe HS includes biologic therapies (adalimumab and secukinumab), resulting in increased disease management costs. Our aim was to estimate the difference between secukinumab and adalimumab in terms of pharmacological costs and costs per responding patient 1 year into therapy from the Spanish National Health System (NHS) perspective.

Material and methods: We designed a decision tree comparing different treatment sequences, starting with a different first-line therapy. Patients switched arms based on achieving HS clinical response $\geq 50\%$ (based on the SUNSHINE, SUNRISE, and PIONEER clinical trials results). A cohort of 100 patients was considered. Only treatment costs in € (2023 base year) were considered for the analysis. A panel of experts validated the model structure and parameters.

Results: After 52-weeks into therapy, treatment sequences in the secukinumab group resulted in a total cost of €1,198,912, corresponding to €16,858 per responder. Total costs in the adalimumab treatment group were 2.5% higher, corresponding to €19,701 per responder. A total of 80% of responders who start treatment with secukinumab do not change treatment, while only 31% of responders who start treatment with adalimumab stay on the same treatment.

Conclusions: The results of our financial assessment can help decision makers in selecting the most efficient therapeutic approach for treating patients with moderate-to-severe HS and poses secukinumab as a suitable therapeutic option for the Spanish NHS.

Introduction

Q2 Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by the inflammation of hair follicles. It typically emerges after puberty and manifests as painful lesions, affecting the axilla, inguinal, perianal, and gluteal regions.^{1,2} In Spain, according to different estimations the prevalences is estimated to be around 0.5%.³

Treatment for HS aims to control the inflammation and reduce pain through changes in lifestyle and medical and surgical therapies.⁴ Traditional therapies includes topical keratolytics, antiseptics, and antibiotics, alongside systemic treatment involving antibiotics, retinoids, and corticosteroids.^{5,6} Biological therapies have been incorporated into the therapeutic arsenal, being of special relevance for

patients with moderate-to-severe HS.^{5,7} Up to 2023 adalimumab was the only biologic treatment approved for HS treatment based on the results of the PIONEER studies.^{8,9} However, the efficacy profile of adalimumab in the routine clinical practice is variable and primary or secondary lack of efficacy may occur.⁷ In February 2023 the European Medicines Agency (EMA) approved secukinumab, a monoclonal antibody that binds to IL-17A, as a therapeutic alternative. Secukinumab has already been approved for psoriasis, psoriatic arthritis, and axial spondylarthritis.¹⁰ The SUNSHINE and SUNRISE trials, conducted with patients with HS, demonstrated that a higher proportion of patients on secukinumab achieved a clinical response in HS clinical response (HiSCR50) vs patients on placebo 52-weeks into therapy.¹¹ Based on this, secukinumab was approved for the treatment of HS.¹⁰

Former studies have shown that the use of biological therapies results in an increased cost of the treatment for HS.^{12,13} In this regard, financial assessments are essential to provide patients with HS with the best

* Corresponding author.

E-mail address: carles.blanch@novartis.com (C. Blanch).

therapeutic approach available. To date, no economic evaluations on the use of secukinumab for HS have been published.

Considering the above, the main goal of the study was to estimate the difference between secukinumab and adalimumab regarding the pharmacological cost and the cost per responding patient one year after treatment initiation from the perspective of the Spanish National Health System (NHS).

Materials and methods

Model

We designed a decision tree considering secukinumab and adalimumab therapies during a 52-week regimen (Fig. 1). The model allows to compare different treatment sequences. Each treatment sequence starts with a different first-line therapy (secukinumab or adalimumab). Efficacy is evaluated at weeks 16 and 52 for the secukinumab group and at weeks 12 and 36 for the adalimumab one based on results from the SUNSHINE and SUNRISE,¹¹ and PIONEER⁸ clinical trials for secukinumab and adalimumab, respectively. Patients achieving a HiSCR of ≥50% (50% reduction in total abscess and inflammatory nodule count, with no increase in abscess count, and no increase in draining fistula count relative to baseline¹⁴) were categorized as responders and stayed in their current treatment group. If treatment fails, a switch in treatment occurs.

Patients from the secukinumab group switch to secukinumab boost (secukinumab q2w) at week 16, as per label.¹⁵ Non-responders from the secukinumab q2w group further switch to adalimumab at week 32 (after 16 weeks on secukinumab q2w) to keep treating patients and explore a new molecule with a different mechanism of action.

Patients from the adalimumab group with no clinical response at either week 16 or 36 (weeks of efficacy assessment in the adalimumab clinical trial) switch to secukinumab, since the label does not consider up-titration.¹⁶ Those failing to respond at week 32 switch to secukinumab q2w (Fig. 1).

The model structure and parameters used have been validated by a panel of 3 experts (2 dermatologists and 1 hospital pharmacist) with extensive expertise in the management and treatment of HS.

Population

The hypothetical cohort included in the model included a total of 100 adults with moderate-to-severe HS who were eligible to receive a biological agent.

Treatments

The model included the two biological therapies currently approved for the treatment of moderate-to-severe HS that were reimbursable in Spain up to March 2023: secukinumab 300 mg, administered initially at weeks 0, 1, 2, 3 and 4 and then monthly during the maintenance phase,^{15,17} and adalimumab administered with an initial dose of 160 mg on day 1 followed by 80 mg on days 15 and 29, continuing the maintenance phase with a dose of 40 mg administered weekly.^{16,17}

Treatment efficacy

Clinical response rates, assessed using the HiSCR50, were obtained from a pooled analysis of the results of the SUNSHINE and SUNRISE trials for secukinumab,¹¹ and the PIONEER trials for adalimumab⁸ (Fig. 1).

The SUNSHINE and SUNRISE trials evaluated secukinumab q4w and secukinumab q2w efficacy at weeks 16 (percentage of patients with clinical response: 47.0% and 48.6%, respectively) and 52 (percentage of patients with clinical response: 78.6% and 79.8%, respectively).¹¹ Response rates to treatments in our decision tree is measured at different timeframes. Accordingly, in our model, the 16-week trial response

Table 1
Cost per treatment sequence.

Treatment sequence	Secukinumab doses (n)	Secukinumab doses Q2 (n)	Adalimumab doses (n)
Secukinumab (52 wk)	15	0	0
Secukinumab (16 wk) → Secukinumab q2w (36 wk)	7	16	0
Secukinumab (16 wk) → Secukinumab q2w (16 wk) → Adalimumab (20 wk)	7	7	22
Adalimumab (52 wk)	0	0	54
Adalimumab (36 wk) → Secukinumab (16 wk)	7	0	38
Adalimumab (16 wk) → Secukinumab (36 wk)	12	0	18
Adalimumab (16 wk) → Secukinumab (16 wk) → Secukinumab q2w (20 wk)	7	9	18

q2w: twice a month; wk: weeks.

rates were applied to patients treated for less than 30 weeks, whereas the 52-week response rates were applied to patients treated for more than 30 weeks.

On the other hand, the PIONEER trials evaluated adalimumab efficacy HiSCR50 at week 12 and 36.⁸ We calculated the average from the results obtained at these weeks for PIONER I and PIONER II, determining that 50.4% of patients showed good responses at week 12 and 48.8% at week 36. In our model, adalimumab response rate at week 16 was assumed to be the same as in week 12. In the absence of data at week 52, we conservatively assumed equal efficacy for adalimumab and secukinumab.

Additionally, the rates of secukinumab rescue and secukinumab q2w rescue (secukinumab given after failure to respond to adalimumab) used were assumed to be the same as for first-line secukinumab and secukinumab q2w as the response was similar in the clinical trials.¹¹

Costs

Only treatment costs (€, 2023) were considered for the analysis. Prices for secukinumab were obtained from Spanish sources.¹⁷⁻¹⁹ The use of secukinumab was applied according to the confidential special conditions of price and reimbursement agreed between the company and the Spanish Ministry of Health in February 2024. Price for adalimumab was calculated using the mean acquisition price and market share for adalimumab and biosimilars in Spain (2020–2022),²⁰ which is 22.0% lower than the list price¹⁹ and an additional discount of 20.0% is applied. The number of doses of each treatment, across all treatment sequences is shown in Table 1.

Outcomes

Differences of pharmacological treatment costs and costs per responder at week 52 were calculated. The number of responders was the sum of patients achieving HiSCR50 at week 52.

Primary failure cost was calculated for each treatment by counting the number of non-responder patients and the cost of doses at week 16

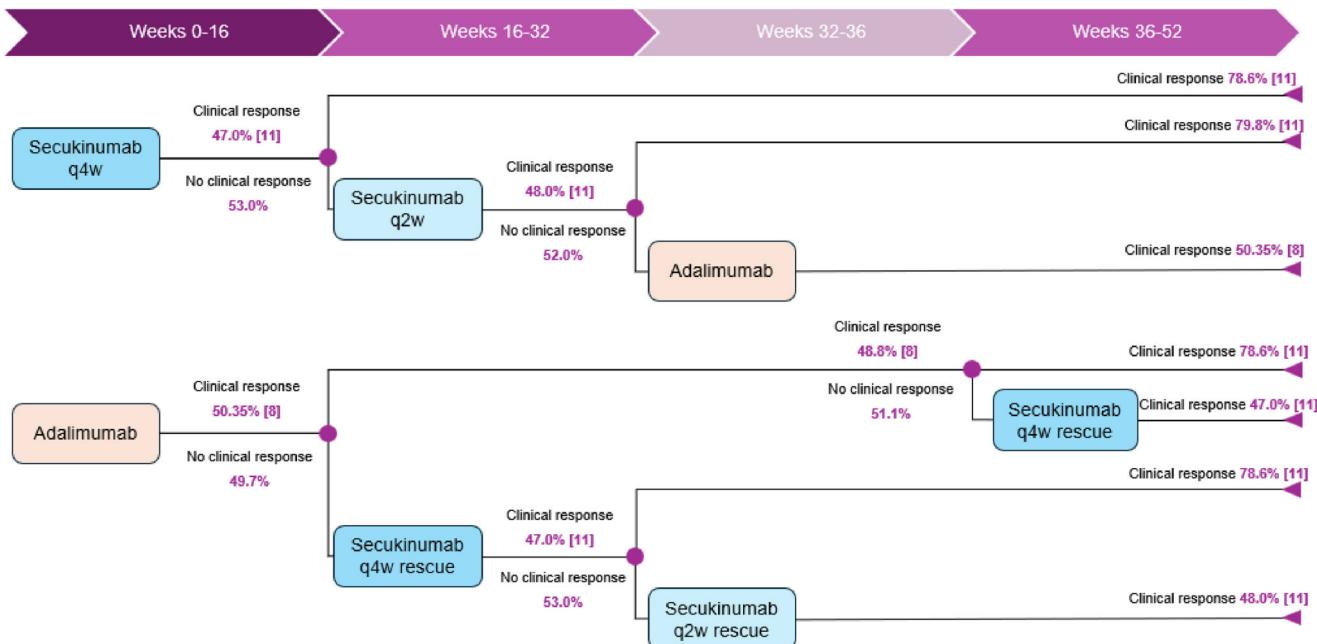


Fig. 1. Decision tree model. q4w: once a month; q2w: twice a month.

and following evaluation periods. For the adalimumab treatment group, the cost of secukinumab induction phase was considered as well.

Alternative scenarios

An alternative scenario was developed to assess the robustness of cost analyses for each treatment sequence. The scenario considers an acquisition cost discount of 45.0% for adalimumab, the average discount for biosimilars.

Results

Base case scenario

To ease the interpretation of model results, a total of 100 patients with HS were considered for each treatment group. After the 52-week regimen, all treatment sequences in the secukinumab treatment group resulted in a total cost of €1,198,912, which corresponds to €16,858 per responder ($n = 71$). The total costs in the adalimumab treatment group were 2.5% higher than the secukinumab treatment group, corresponding to €19,701 per responder ($n = 62$) (Table 2). Overall, the cost per responder in the treatment sequences initiated with secukinumab resulted in a difference of €2843 per responder in favor of secukinumab, 14.4% lower than those on adalimumab (Table 2).

Based on the efficacy data considered, in the modelling after 1 year into therapy, 80.3% (57 out of 71) of responders who start treatment with secukinumab do not change treatment, while only 30.6% (19 out of 62) of responders who start treatment with adalimumab remain on the same therapy (Table 2).

The cost of secukinumab doses represented almost 90% of the total cost in the treatment sequences initiated with secukinumab, while for the treatment sequences initiated with adalimumab, the cost of adalimumab doses represented a 40.8% (Fig. 2).

During the induction phase, 53 patients from the secukinumab group were considered to be non-responders. This resulted in costs associated with primary failure of €288,393, all of which were attributable to the administration of secukinumab. On the other hand, 50 patients did not respond to adalimumab the first 16 weeks into therapy, resulting in a

total primary failure cost of €367,782. Of these, €174,808 corresponded to adalimumab treatment, and €192,975 to secukinumab induction.

Alternative scenario

For the alternative scenario, the results showed the same trend as in the base case (Table 3) with a cost per responder for secukinumab treatment sequences of €16,337 (€16,566 for adalimumab).

Overall, the cost per responder for the treatment sequences initiated with secukinumab showed that the costs were very similar, with a difference of €230 per responder in favor of secukinumab.

Discussion

In this study, we conducted a pharmaco-economic evaluation of the secukinumab use for the treatment of moderate-to-severe HS vs the use of adalimumab from the perspective of the Spanish NHS, using a cost-consequence analysis.

The analysis showed that, based on previously published efficacy rates, initiating treatment for hidradenitis suppurativa with secukinumab resulted in a higher number of responders compared with initiation of adalimumab. Notably, treatment with secukinumab could be exclusive, without the need for dose escalation or switching, whereas treatment with adalimumab may require rescue therapy with secukinumab. In addition, initiation with secukinumab was associated with lower total pharmacologic costs and lower cost per responder compared with initiation with adalimumab. However, when a 45.0% discount was applied to the cost of adalimumab, a lower cost per responder was observed.

Our results are consistent with those from previously published studies in other conditions such as psoriasis²¹ and psoriatic arthritis²² in which secukinumab demonstrated to be the most efficient treatment from the Spanish NHS perspective vs other biological agents. This was attributed to its efficacy profile and persistence of the effect, resulting in the greatest number of responders with a cost containment, which translates into the lowest cost per responder. Of note, for HS management, the standard dose for adalimumab is administered every week, which doubles the dose and cost vs other diseases as psoriasis, psoriatic arthritis, or axial spondylopathies.

Table 2

Cost per treatment sequence, treatment, and responders after the 52-week regimen.

	Patients (n)		Cost per responder(€)
	Responders	Non-responders	
Secukinumab (52 wk)	37	10	14,835
Secukinumab (16 wk) → Secukinumab q2w (36 wk)	20	5	14,612
Secukinumab (16 wk) → Secukinumab q2w (16 wk) → Adalimumab (20 wk)	14	14	25,529
Total	71	29	16,858
Adalimumab (52 wk)	19	5	13,438
Adalimumab (16 wk) → Secukinumab (36 wk)	12	14	27,392
Adalimumab (16 wk) → Secukinumab (16 wk) → Secukinumab q2w (20 wk)	18	5	16,347
Adalimumab (36 wk) → Secukinumab (16 wk)	13	14	26,769
Total	62	38	19,701

q2w: twice a month; wk: weeks.

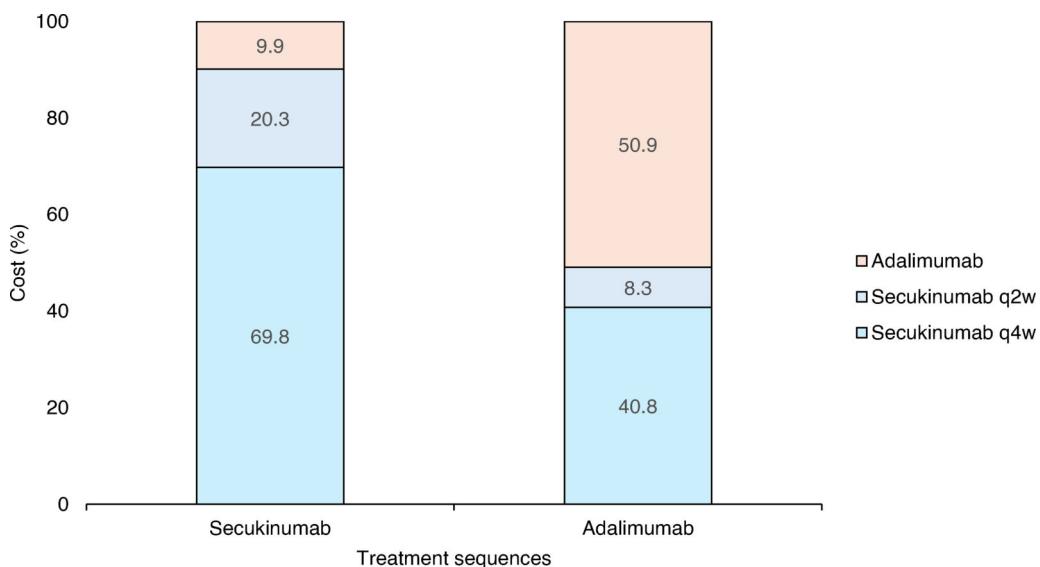


Fig. 2. Total cost of each treatment in both treatment sequences. q2w: twice a month.

Table 3

Cost per treatment sequence and treatment. Alternative scenario.

	Cost per responder(€)
Secukinumab (52 wk)	14,835
Secukinumab (16 wk) → Secukinumab q2w (36 wk)	14,612
Secukinumab (16 wk) → Secukinumab q2w (16 wk) → Adalimumab (20 wk)	22,858
Total	16,337
Adalimumab (52 wk)	9,239
Adalimumab (16 wk) → Secukinumab (36 wk)	22,450
Adalimumab (16 wk) → Secukinumab (16 wk) → Secukinumab q2w (20 wk)	14,947
Adalimumab (36 wk) → Secukinumab (16 wk)	24,476
Total	16,566

¹⁹⁹ The efficacy data for both treatments were obtained from previous
²⁰⁰ clinical trials. However, clinical trials for adalimumab did not consider
²⁰¹ the 52-week timepoint and for this, clinical response rates were assumed
²⁰² to be the same as for secukinumab. In this context, the model devel-
²⁰³ oped for this study was conservative for secukinumab, as real-life studies

have reported clinical responses rates for adalimumab at 52 weeks from 53.9%²³ to 72.1%,²⁴ which is lower than that assumed for this study (78.6%).

The management of HS not only inflicts a significant financial strain on patients but also affects their work productivity.^{25,26} Former

209 European studies have indicated that the predominant contributors to
 210 HS-related costs are treatment expenses, time off work due to sick-
 211 ness and decline in work productivity.^{12,13} Given the higher number of
 212 responders with secukinumab compared with adalimumab, both direct
 213 costs related to hospital-based patient management and indirect costs,
 214 including those associated with reduced work productivity, may be
 215 decreased.

216 Similarly, HS has a significant negative impact on patients' HRQoL,
 217 including high levels of pain, anxiety, and depression, being higher in
 218 those with moderate-to-severe HS.²⁷ In this regard, a recently published
 219 study showed that, compared with placebo, secukinumab improved
 220 patients' HRQoL.²⁸ This, along with the results of our study showing
 221 that the early use of secukinumab results in a higher number of respon-
 222 ders, suggests that using secukinumab as a first-line therapy could help
 223 achieve a better disease control and ultimately reduce the disease bur-
 224 den.

225 For the management of HS, the concept of "window of opportu-
 226 nity" was proposed and defined as that period in the disease course
 227 in which efforts to control the disease are more effective and patients
 228 can obtain the best results.²⁹ In this regard, the results of our study
 229 show that starting HS therapy with secukinumab would be beneficial, as
 230 a higher proportion of patients in this treatment group were considered
 231 responders and resulted in lower treatment costs vs patients treated with
 232 adalimumab.

233 Our study has some limitations. First, due to the lack of long-term
 234 efficacy data for adalimumab in clinical trials, we assumed the clin-
 235 ical response rates from SUNRISE and SUNSHINE clinical trials. Second,
 236 the model assumes that patients who do not achieve a response discon-
 237 tinue treatment, because partial responses could not be incorporated
 238 owing to a lack of data. Third, in the absence of data on patients who
 239 fail biologic therapy and subsequently receive rescue treatment with
 240 another biologic or treatment intensification, efficacy estimates from the
 241 corresponding clinical trials in biologic-naïve patients were assumed.
 242 Further research is warranted to evaluate treatment sequencing when
 243 local comparative studies in similar populations become available.

244 Fourth, for the model in our study, we assumed timepoints for
 245 efficacy evaluation slightly different from those in the clinical trials
 246 to compare both treatments. Fifth, inclusion criteria for clinical tri-
 247 als assessing the efficacy secukinumab and adalimumab were not the
 248 same thus, this could have influenced clinical response rates. Sixth,
 249 discontinuation rates were not considered in the decision tree due to
 250 the short-term follow-up of our analysis, as they should have mini-
 251 mal impact. Finally, due to the nature of the model used, only the
 252 cost of pharmacological treatment is considered, although the total
 253 cost of patient management would include other costs such as surgery.
 254 However, it has been shown that there is a correlation between
 255 good pharmacological control and the need for fewer surgical inter-
 256 ventions when patients are treated with secukinumab. Despite the
 257 above-mentioned limitations, we tried to address them in the most con-
 258 servative approach not overestimating the efficacy and persistence data
 259 for secukinumab and giving adalimumab its best possible results pub-
 260 lished or estimated.

261 Secukinumab has been approved in Spain as second-line therapy
 262 after failure of adalimumab. This analysis suggests that, when consider-
 263 ing that adalimumab is not providing enough efficacy for the patients,
 264 there are no economical reason for delaying the switch to secukinumab.
 265 The results of our economic evaluation can help decision makers in
 266 selecting the most efficient therapeutic approach for treating patients
 267 with moderate-to-severe HS and poses secukinumab as a suitable ther-
 268 apeutic option for the Spanish NHS.

269 CRediT authorship contribution statement

270 All authors of the manuscript (AMC, AML, AJM and CB) have
 271 contributed to the conception and design of the model and the inter-

272 pretation of the data; they have participated in the critical review of
 273 the intellectual content of the manuscript and have approved its final
 274 version prior to publication.

275 Conflict of interest

276 The authors declare no conflict of interest. Q3

277 Acknowledgements

278 We thank Outcomes'10 (a ProductLife Group Company) for their
 279 contributions and support throughout the study, both in concept, design
 280 and medical writing.

281 References

1. Jemec GB. Clinical practice. Hidradenitis suppurativa. *N Engl J Med.* 2012;366:158–164.
2. Sabat R, Jemec GBE, Matusiak L, Kimball AB, Prens E, Wolk K. Hidradenitis suppurativa. *Nat Rev Dis Primers.* 2020;6:18.
3. Jfri A, Nassim D, O'Brien E, Gulliver W, Nikolakis G, Zouboulis CC. Prevalence of hidradenitis suppurativa: a systematic review and meta-regression analysis. *JAMA Dermatol.* 2021;157:924–931.
4. van Straalen KR, Prens EP, Gudjonsson JE. Insights into hidradenitis suppurativa. *J Allergy Clin Immunol.* 2022;149:1150–1161.
5. Amat-Samaranch V, Agut-Busquet E, Vilarrasa E, Puig L. New perspectives on the treatment of hidradenitis suppurativa. *Ther Adv Chron Dis.* 2021;12, 20406223211055920.
6. Hendricks AJ, Hsiao JL, Lowes MA, Shi VY. A comparison of international management guidelines for hidradenitis suppurativa. *Dermatology.* 2021;237:81–96.
7. Martora F, Megna M, Battista T, et al. Adalimumab, ustekinumab, and secukinumab in the management of hidradenitis suppurativa: a review of the real-life experience. *Clin Cosmet Investig Dermatol.* 2023;16:135–148.
8. Kimball AB, Okun MM, Williams DA, et al. Two phase 3 trials of adalimumab for hidradenitis suppurativa. *N Engl J Med.* 2016;375:422–434.
9. Kimball AB, Sundaram M, Shields AL, et al. Adalimumab alleviates skin pain in patients with moderate-to-severe hidradenitis suppurativa: secondary efficacy results from the PIONEER I and PIONEER II randomized controlled trials. *J Am Acad Dermatol.* 2018;79:1141–1143.
10. European Medicines Agency. Cosentyx® (secukinumab): summary of product characteristics. https://www.ema.europa.eu/en/documents/product-information/cosentyx-epar-product-information_en.pdf. Q4
11. Kimball AB, Jemec GBE, Alavi A, et al. Secukinumab in moderate-to-severe hidradenitis suppurativa (SUNSHINE and SUNRISE): week 16 and week 52 results of two identical, multicentre, randomised, placebo-controlled, double-blind phase 3 trials. *Lancet.* 2023;401:747–761.
12. Frings VG, Schöffski O, Goebeler M, Presser D. Economic analysis of the costs associated with hidradenitis suppurativa at a German University Hospital. *PLoS One.* 2021;16, e0255560.
13. Gáspár K, Hunor Gergely L, Jenei B, et al. Resource utilization, work productivity and costs in patients with hidradenitis suppurativa: a cost-of-illness study. *Expert Rev Pharmacoecon Outcomes Res.* 2022;22:399–408.
14. Kimball AB, Sobell JM, Zouboulis CC, et al. HISCR (hidradenitis suppurativa clinical response): a novel clinical endpoint to evaluate therapeutic outcomes in patients with hidradenitis suppurativa from the placebo-controlled portion of a phase 2 adalimumab study. *J Eur Acad Dermatol Venereol.* 2016;30:989–994.
15. Agencia Española de Medicamentos y Productos Sanitarios. Ficha técnica Cosentyx. https://cima.aemps.es/cima/dochtml/ft/114980004/FT_114980004.html.
16. Agencia Española de Medicamentos y Productos Sanitarios. Ficha técnica Humira. https://cima.aemps.es/cima/dochtml/ft/103256017/FT_103256017.html.
17. Ministerio de Sanidad. BIFIMED: Buscador de la Información sobre la situación de financiación de los medicamentos. <https://www.sanidad.gob.es/profesionales/medicamentos.do>.
18. Servicio Canario de Salud. *Resolución de adjudicación No. 121/2023;* 2023.
19. Consejo General de Colegios Oficiales de Farmacéuticos. Bot Plus Web. <https://botplusweb.portafarma.com/>.
20. Estudio de mercado de ACOBUR. Novartis 2022 Data on file.
21. Puig L, Notario J, Jiménez-Morales A, et al. Secukinumab is the most efficient treatment for achieving clear skin in psoriatic patients: a cost-consequence study from the Spanish National Health Service. *J Dermatol Treat.* 2017;28:623–630.
22. Jiménez-Morales A, Cázar R, Aceituno S, Prades M, Blanch C. A cost-consequence analysis of the preferential use of secukinumab versus adalimumab for the treatment of psoriatic arthritis. *Reumatol Clin (Engl Ed).* 2021;17:536–542.
23. Marzano AV, Genovese G, Casazza G, et al. Evidence for a 'window of opportunity' in hidradenitis suppurativa treated with adalimumab: a retrospective, real-life multicentre cohort study. *Br J Dermatol.* 2021;184:133–140.
24. Hafner A, Ghislain PD, Kovács R, et al. Improvement in hidradenitis suppurativa and quality of life in patients treated with adalimumab: real-world results from the HARMONY study. *J Eur Acad Dermatol Venereol.* 2021;35:2277–2284.
25. Tzellos T, Yang H, Mu F, Calimlim B, Signorovitch J. Impact of hidradenitis suppurativa on work loss, indirect costs and income. *Br J Dermatol.* 2019;181:147–154.

347 26. Garg A, Geissbühler Y, Houchen E, et al. Disease burden and treatment patterns
348 among US patients with hidradenitis suppurativa: a retrospective cohort study. *Am
349 J Clin Dermatol.* 2023;24:977–990. Q553

350 27. Kimball AB, Kirby J, Ingram JR, et al. Burden of hidradenitis suppurativa: a sys-
351 tematic literature review of patient reported outcomes. *Dermatol Ther (Heidelb).*
352 2024;14:83–98. 354

353 28. Zouboulis CC, Passeron T, Pariser D, et al. Secukinumab in patients with moderate-
354 to-severe hidradenitis suppurativa based on prior biologic exposure: an efficacy and
355 safety analysis from the SUNSHINE and SUNRISE phase III trials. *Br J Dermatol.*
356 2024. 355

357 29. Martorell A, Caballero A, González Lama Y, et al. Management of patients with
358 hidradenitis suppurativa. *Actas Dermosifiliogr.* 2016;107(suppl 2):32–42. 356

359 357