

Research Letter

Toxic Epidermal Necrolysis Due to Pembrolizumab-Associated Chemotherapy

Q1 L. Bernal Masferrer *, B. Aldea Manrique , M. Claudia Matei, T. Gracia Cazaña

8 Servicio de Dermatología, Hospital Universitario Miguel Servet, Zaragoza, Spain

11 To the Editor,

Q2 A 72-year-old man was evaluated in the emergency department of
13 a different center for the development of generalized, confluent ery-
14 thematous macules and papules on the extremities, with a morbilliform
15 appearance, marked pruritus, and occasional blisters. The mucosae were
16 spared, and no other systemic signs were present. The lesions had pro-
17 gressed gradually over approximately 10 days. The patient was on
18 chemotherapy (carboplatin and paclitaxel) and pembrolizumab for stage
19 IV squamous non-small cell lung cancer with PD-L1 expression < 1%.
20 Pembrolizumab (200 mg) had been introduced 10 days earlier during
21 the 3rd chemotherapy cycle, with no other changes in medication.

22 The patient was diagnosed with Stevens–Johnson syndrome (SJS),
23 underwent skin biopsy, and was started on prednisone 1 mg/kg/d with
24 an initially favorable response and clinical improvement the next week.
25 However, 19 into chemotherapy, he started experiencing clinical deteri-
26 oration, with involvement of 60% of the body surface area, a SCORTEN
27 score of 4 (estimated mortality 62.25%), bullae appeared, along with
28 painful epidermal detachment, hemorrhagic crusts, hematuria, and sig-
29 nificant oral mucositis (Figs. 1 and 2).

30 Given the poor clinical progression, a 2nd skin biopsy was performed
31 due to suspicion of toxic epidermal necrolysis (TEN). Since the patient
32 had not experienced any adverse effects with the first 2 chemotherapy
33 cycles, pembrolizumab was suspected as the causative agent.

34 Methylprednisolone was increased to 1.5 mg/kg/d for 3 days in
35 pulses, and a single dose of etanercept 50 mg was administered. Wound
36 care every 48 h included aqueous chlorhexidine, paraffin gauze dress-
37 ings, clobetasol, and topical gentamicin to prevent secondary infection.
38 Histopathology was consistent with the presumed diagnosis, reveal-
39 ing complete epithelial denudation, vacuolar interface damage in the
40 residual follicular adnexa, and absence of immune deposits on direct
41 immunofluorescence in both biopsies.

42 On day 26 following pembrolizumab administration, the patient
43 again worsened, with 80% total body surface area detachment;
44 cyclosporine 3 mg/kg/d was added. Over the next 3 weeks, the
45 cutaneous lesions re-epithelialized progressively until achieving near-
46 complete resolution (Fig. 3), allowing gradual tapering of immunosup-
47 pression. One month after discharge from our service, the patient died
48 due to complications related to his malignancy.

Fig. 1. Extensive epidermal detachment involving the trunk, upper and lower extremities, and back (BSA 60%) 26 days after pembrolizumab administration.

49 Immune checkpoint inhibitors (ICIs) are a novel class of anticancer
50 agents that modulate T-cell activation. Under physiologic conditions,
51 programmed cell death protein 1 (PD-1), its ligand PD-L1, and cytotoxic
52 T-lymphocyte-associated antigen 4 (CTLA-4) attenuate T-cell activa-
53 tion, supporting tolerance and homeostasis—mechanisms exploited by
54 tumor cells to evade immune surveillance.¹ In contrast, inhibition
55 of these pathways triggers chronic inflammation that may result in

* Corresponding author.

Q1 E-mail address: laurabermas@gmail.com (L. Bernal Masferrer).

<https://doi.org/10.1016/j.ad.2025.104570>

0001-7310/© 2025 AEDV. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

Fig. 2. Extensive epidermal detachment involving the trunk, upper and lower extremities, and back (BSA 60%) 26 days after pembrolizumab administration.

Fig. 3. Near-complete re-epithelialization with marked clinical improvement 16 days after initiation of cyclosporine.

immune-related adverse events (irAEs),¹ which can affect any organ system and involve the skin in up to 40% of patients.²

To classify reaction severity, the U.S. National Cancer Institute developed the Common Terminology Criteria for Adverse Events (CTCAE),³ in which differentiation between grade 3 and grade 4 is essential because grade 4 requires permanent discontinuation of the offending agent—this includes TEN.⁴ The mechanism by which anti-PD-1 agents may induce SJS/TEN appears to involve cytotoxicity with keratinocyte apoptosis and CD8+ lymphocytic infiltration at the dermoepidermal junction.⁵

Morbilliform eruptions are a common finding during anti-PD-1 therapy, occurring in approximately 16.7% of patients treated with pembrolizumab and 14.3% with nivolumab,⁵ but <1% progress to TEN.4 Clinical presentation resembles classic TEN, with a prodrome of fever, constitutional symptoms, and generalized eruption progressing to blistering, mucosal involvement, and a positive Nikolsky sign,⁴ though often with a slower course. The longer latency between drug administration and symptom onset is believed to relate to pembrolizumab prolonged half-life and delayed attainment of steady-state levels vs conventional drugs.^{1,6} Reported cases in the literature describe a median latency of 11 weeks, ranging from 2 to 28 weeks after drug initiation.^{1,6}

In patients on ICIs who develop a slowly progressive exanthem unresponsive to topical or systemic corticosteroids, the possibility of progression to SJS/TEN should be considered because early treatment—such as plasmapheresis—may be beneficial.¹ Although the use of corticosteroids and immunosuppressants in classic TEN remains controversial,⁷ IV corticosteroids are strongly recommended in cases associated with ICIs, having been used in all published cases, often in combination with cyclosporine or intravenous immunoglobulin.^{6,8,9} Moreover, anti-TNF- α inhibitors such as etanercept may reduce the required corticosteroid dose and thereby minimize adverse effects.¹⁰

Conflict of interest

The authors declare that they have no conflict of interest.

Q3₈₇

References

1. Maloney NJ, Ravi V, Cheng K, Bach DQ, Worswick S. Stevens-Johnson syndrome and toxic epidermal necrolysis-like reactions to checkpoint inhibitors: a systematic review. *Int J Dermatol.* 2020;59:183-188, <http://dx.doi.org/10.1111/IJD.14811>.
2. Sibaud V. Dermatologic reactions to immune checkpoint inhibitors. *Am J Clin Dermatol.* 2017;19:345-361, <http://dx.doi.org/10.1007/S40257-017-0336-3>.
3. Common Terminology Criteria for Adverse Events (CTCAE) | Protocol Development | CTEP. Available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm Accessed 17.2.23.
4. Coleman EL, Olamiju B, Leventhal JS. The life-threatening eruptions of immune checkpoint inhibitor therapy. *Clin Dermatol.* 2020;38:94-104, <http://dx.doi.org/10.1016/j.cld.2019.10.015>.
5. Yusuf N. Immunomodulation of skin cancer. *Int J Mol Sci.* 2023;24, <http://dx.doi.org/10.3390/IJMS241310462>.
6. Chow KVC, O'Leary C, Paxton-Hall F, Lambie D, O'Byrne K. Pembrolizumab-induced toxic epidermal necrolysis: case report. *Oxf Med Case Rep.* 2022;112-114, <http://dx.doi.org/10.1093/OMCR/OMAC025>.
7. Charlton OA, Harris V, Phan K, Mewton E, Jackson C, Cooper A. Toxic epidermal necrolysis and Steven-Johnson syndrome: a comprehensive review. *Adv Wound Care (New Rochelle).* 2020;9:426, <http://dx.doi.org/10.1089/WOUND.2019.0977>.
8. Brahmer JR, Lacchetti C, Thompson JA. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline summary. *J Oncol Pract.* 2018;14:247-249, <http://dx.doi.org/10.1200/JOP.18.00005>.
9. Gallo Marin B, Oliva R, Kahn B, et al. Pembrolizumab-induced toxic epidermal necrolysis in a patient with metastatic esophageal adenocarcinoma. *R I Med J* (2013). 2022;105:34.
10. Zhang J, Lu CW, Chen CB, et al. Evaluation of combination therapy with etanercept and systemic corticosteroids for Stevens-Johnson syndrome and toxic epidermal necrolysis: a multicenter observational study. *J Allergy Clin Immunol Pract.* 2022;10:1295-1304, <http://dx.doi.org/10.1016/j.jaip.2022.01.038>.