

Resident's Forum

RF-Biological Treatments in Familial Benign Pemphigus or Hailey–Hailey Disease

Q1 P. Balado-Simó ^{a,*1}, M. Mansilla-Polo ^{ID b,c,d,1}, J.M. Mascaró Jr. ^{a,e,f}

^a Servicio de Dermatología, Hospital Clínic de Barcelona, Barcelona, Spain

^b Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, Spain

^c Departamento de Dermatología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain

^d Departamento de Dermatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain

^e Departamento de Medicina, Universidad de Barcelona, Barcelona, Spain

^f Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

14

ARTICLE INFO

Keywords:

Familial benign pemphigus

Hailey–Hailey disease

Biologics

Small molecule drugs

Q2 Hailey–Hailey disease (HHD), also known as benign familial pemphigus, is a rare genetic disorder with autosomal dominant inheritance caused by mutations in the ATP2C1 gene. It is characterized by recurrent vesiculobullous plaques in intertriginous areas, with frequent exacerbations triggered by friction, heat, or infections. Despite advances in understanding its molecular pathophysiology in recent years, no curative treatment is currently available. However, since life expectancy is not affected in patients with HHD, current therapeutic approaches focus on symptomatic control. HHD is associated with several comorbidities, including frequent secondary infections (especially *Staphylococcus aureus*), hyperhidrosis, contact dermatitis related to topical treatments, and psychological disturbances derived from sometimes disabling clinical signs.^{1,2}

First-line therapies include topical corticosteroids and botulinum toxin, the latter having shown improvement by inducing chemodenervation of sweat glands. Second-line options include oral retinoids, dermabrasion, CO₂ laser therapy, and low-dose naltrexone (1.5–10 mg/day), although results with these strategies are variable and, in some cases, controversial.¹ Recently, with the widespread use of biologic agents and other novel drugs, promising results have been reported for the treatment of HHD.^{1–4}

In a recent article by Shanshan Li et al.,¹ different cases of HHD treated with novel agents were reviewed. Most patients were treated with monotherapy. In general, these drugs act at 2 levels: blockade of circulating receptors or interleukins, and modulation of intracellular signaling pathways.

Among these therapies, the most frequently reported is apremilast, an oral phosphodiesterase-4 inhibitor whose mechanism of action leads to reduced levels of tumor necrosis factor (TNF)- α , interleukin (IL)-17, and IL-23.³ Eighteen cases treated with apremilast have been published, showing contradictory results: improvement was observed in 12 cases, no improvement in 5, and treatment discontinuation in 1 due to adverse effects. The agent with the 2nd highest level of evidence is dupilumab, an IL-4 and IL-13 inhibitor, with a total of 11 published cases, 10 of which showed significant dermatologic improvement (affected body surface area and quality of life measured using the Dermatology Life Quality Index [DLQI]).

The remaining evidence for new drugs is based on isolated case reports, typically involving a single patient per drug. These include the TNF- α inhibitors etanercept and adalimumab, which achieved significant improvement (affected surface area, DLQI) in one patient each. It has been postulated that their effect in HHD may be related to modulation of calcium homeostasis. In HHD, disruption of the ATP2C1 gene alters the epidermal calcium gradient, affecting keratinocyte differentiation and skin barrier integrity. Altered calcium concentration compromises the stability of adhesion proteins, promoting acantholysis. TNF- α , whose expression increases following epidermal barrier disrupt-

* Corresponding author.

E-mail address: balado@clinic.cat (P. Balado-Simó).

Q1 The first 2 authors contributed equally to the drafting and revision of the manuscript and are designated as co-authors.

<https://doi.org/10.1016/j.ad.2025.104565>

Available online xxx

0001-7310/© 2025 AEDV. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

Q1 Please cite this article as: P. Balado-Simó, M. Mansilla-Polo and J.M. Mascaró Jr., RF-Biological Treatments in Familial Benign Pemphigus or Hailey–Hailey Disease, *ACTAS Dermo-Sifiliográficas*, <https://doi.org/10.1016/j.ad.2025.104565>

Table 1

New drugs for the treatment of HHD.

Drug	Specific mechanism of action	No. of cases	Clinical trial or reference study	Level of evidence*	Lesion location	Previous treatments	Main dermatologic outcomes**	Median follow-up time (months)	Adverse effects
Apremilast	Oral PDE-4 inhibitor	18	1 series of 5 cases, 1 series of 4 cases, 2 series of 2 cases, and 5 single case reports	4	9 axillary, 8 inguinal, 5 trunk; 5 not specified	Multiple (mostly topical corticosteroids, antibiotics, and naltrexone)	Significant improvement in 8 cases, partial improvement in 4, no improvement in 5; 1 case discontinued due to adverse effects	8	Diarrhea (4), dyspepsia and nausea (2), headache (1), myalgia (1)
Dupilumab	IL-4 receptor α inhibitor blocking IL-4 and IL-13 signaling	11	2 series of 3 cases and 4 single case reports	4	7 axillary, 7 trunk, 7 inguinal or perianal	Multiple (mostly topical corticosteroids, antibiotics, and naltrexone)	Significant improvement in 10 cases, partial improvement in 1	13	New-onset psoriasis in 1 case
Tralokinumab	IL-13 inhibitor	1	Single case report	4	Inguinal region	Topical and systemic antibiotics, topical corticosteroids, systemic naltrexone	Significant improvement	3	None
Abrocitinib	Selective JAK-1 inhibitor	1	Single case report	4	Inguinal region	Topical and oral corticosteroids, topical antifungals, antibiotics	Significant improvement	4	None
Upadacitinib	Selective JAK-1 inhibitor	1	Single case report	4	Axillary region, trunk, thighs	Topical corticosteroids, topical antibiotics, minocycline, fluconazole, acitretin, naltrexone, cyclosporine A, dapsone, dupilumab, calcipotriol	Significant improvement	4	None
Topical ruxolitinib	JAK-1 and JAK-2 inhibitor	1	Single case report	4	Axillary and inguinal regions	Topical corticosteroids, intralesional corticosteroids, topical antibiotics, topical tacrolimus, apremilast	Significant improvement	5	None
Adalimumab	TNF- α inhibitor	1	Single case report	4	Neck, trunk, thighs	Oral and topical corticosteroids, fluconazole, itraconazole, doxycycline, topical and systemic antibiotics, minocycline, glycopyrrolate, zinc oxide, calcipotriol, vitamin D, topical fluorouracil	Significant improvement	8	Not reported

Table 1 (Continued)

Drug	Specific mechanism of action	No. of cases	Clinical trial or reference study	Level of evidence*	Lesion location	Previous treatments	Main dermatologic outcomes**	Median follow-up time (months)	Adverse effects
Etanercept	TNF- α inhibitor	1	Single case report	4	Axillary region, trunk	Topical and systemic antibiotics, fluconazole, topical and systemic corticosteroids, cyclosporine A, itraconazole, topical antifungal, isotretinoin, laser	Significant improvement	15	Not reported
Ocrelizumab	CD-20 inhibitor	1	Single case report	4	Axillary region, trunk, thighs	Topical and systemic corticosteroids, calcipotriol, systemic antibiotics, doxycycline, minocycline	Significant improvement	24	Not reported
Guselkumab	Selective IL-23 inhibitor	10 (estimated)	Non-randomized phase II clinical trial	Pending	Pending	Pending	Pending	Pending	Pending

Source: Data adapted from Liu et al.,¹ Garg et al.,² Kaur et al.,³ Adamson et al.,⁴ and clinicaltrials.gov. Authors' own elaboration.

63 may further aggravate this process by increasing cytosolic calcium
64 and perpetuating inflammation, suggesting a potential therapeutic role
65 for anti-TNF agents in the disease. However, other case reports argue
66 against a beneficial effect of these agents in HHD.⁵

67 Of note, the inhibition of the Janus kinase (JAK) pathway has
68 emerged as another potential mechanism of action in HHD. Two
69 cases with effective outcomes have been reported using abrocitinib
70 and upadacitinib, respectively. Furthermore, a favorable case has been
71 described with topical ruxolitinib in a patient with partial response to
72 dupilumab (combined therapy). The effect of these treatments may be
73 attributed to their ability to inhibit the JAK-STAT pathway, thereby
74 indirectly blocking other proinflammatory cytokines such as IL-4 and
75 IL-13 (Table 1).

76 Among other biologic treatments, satisfactory responses have been
77 reported in single cases on tralokinumab,² an IL-13 inhibitor, and ocre-
78 lizumab,⁴ a cluster of differentiation (CD) 20 inhibitor.

79 Finally, a non-randomized phase II clinical trial with guselkumab
80 (NCT06651489), a selective IL-23 inhibitor, is currently underway and
81 in the recruitment phase. The recruitment period will end in November
82 2025. All participants will receive 100 mg of guselkumab at the FDA-
83 approved dosing schedule for psoriasis and will be followed clinically
84 at 4, 12, and 24 weeks after treatment initiation. A 12-week follow-up
85 period after the final dose of guselkumab will be conducted to monitor
safety.

86 In conclusion, new therapeutic options have emerged in recent years
87 for a disease that has traditionally been considered orphan, particu-
88 larly for refractory forms that significantly impair patients' quality of
89 life. Since most of the available data are derived from small case series,
90 prospective studies and clinical trials are needed to strengthen the evi-
91 dence base and support the approval of these agents for the treatment
92 of HHD.

93 References

1. Liu W, Xue X, Li S. Treatment of Hailey-Hailey disease with biologics and small-molecule inhibitors: a systematic review. *Clin Exp Dermatol*. 2024;50; 86
87 <http://dx.doi.org/10.1093/ced/lae298>. 88
2. Garg KS, Silverberg J, Tjahjono L. Hailey-Hailey disease successfully treated with tralokinumab and literature review of successful treatment with dupilumab. *JAAD Case Rep*. 2024;52:18-20. 89
3. Kaur R, Agrawal I, Sood S. Successful use of apremilast in treatment of refractory Hailey-Hailey disease. *Indian Dermatol Online J*. 2024;15:1041-1043. 90
4. Adamson SR, Higgins CL, Veysey E. Hailey-Hailey disease (benign familial pemphigus) responsive to treatment with ocrelizumab for multiple sclerosis. *Br J Dermatol*. 2023;189:232-234. 91
5. Mansilla-Polo M, Abril-Pérez C, Navarro-Mira MÁ, Botella-Estrada R. Recalcitrant Hailey-Hailey disease with satisfactory response to apremilast. *Actas Derm-Sifiliogr*. 2024;115:1107-1109. 92