

Original Article

Long-term Persistence, Safety and Efficacy Profile of Dupilumab in Atopic Dermatitis: A Real-world Retrospective Multicenter Study From Spain

Q1 J.F. Silvestre ^{a,*1}, S. Santos-Alarcón ^{b,1}, A. Mengual-Sendra ^{c,2}, V. Zaragoza ^{d,1}, M.P. Ortega-García ^{d,2}, M. Rodriguez ^{e,1}, E. Monte-Boquet ^{e,2}, R.F. Ruiz de Apodaca ^{a,2}, N. Pérez Prior ^{b,2}, F.J. Miquel ^{c,1}, J. Borrás-Blasco ^{f,2}

^a General University Hospital Dr. Balmis, ISABIAL, Pintor Baeza, 11, 03010 Alicante, Spain

^b Virgen de los Lirios Hospital, Polígono de Caramanchel, s/n, 03804 Alcoi, Spain

^c Arnau de Vilanova Hospital, Carrer de Sant Clement, 12, Campanar, 46015 Valencia, Spain

^d Consortium General University Hospital of Valencia, Av. de les Tres Creus, 2, L'Olivereta, 46014 Valencia, Spain

^e La Fe University and Polytechnic Hospital, Av. de Fernando Abril Martorell, 106, Quatre Carreres, 46026 Valencia, Spain

^f Sagunto Hospital, Av. Ramón Y Cajal, s/n, 46520 Port de Sagunt, Spain

ARTICLE INFO

Keywords:

Atopic dermatitis
Dupilumab
Long-term treatment
Persistence
Efficacy
Safety
Real-life

ABSTRACT

Background: The safety and efficacy profile of dupilumab in the management of atopic dermatitis (AD) are established in clinical trials. However, long-term real-world persistence data in Spain are limited.

Objective: The primary endpoint of the study was to assess the 4-year persistence of dupilumab in routine clinical practice in patients with moderate-to-severe AD. Secondary endpoints included the analysis of safety and efficacy profile during the same period of time.

Methods: We conducted a retrospective cohort study of dispensation registries and health records from 5 hospitals. Adults with moderate-to-severe AD starting on dupilumab treatment were followed for 4-years. Dupilumab persistence was estimated using Kaplan-Meier analysis. Efficacy was measured by changes in EASI and IGA scores. Significant adverse events (AEs) leading to discontinuation were recorded.

Results: A total of 251 patients included (mean age, 46 years; 59.4%, men; 64.5% with at least 1 atopic comorbidity; mean time from AD diagnosis, 14.5 years). Of these, 196 (78.1%) had been on ≥ 2 systemic therapies before starting dupilumab. Baseline EASI and IGA values averaged 27.9 and 4.0, respectively. Persistence rates were 90%, 80%, 78%, and 73% after 1, 2, 3, and 4-years, respectively. By 16 weeks, 47.8% and 54.7% of patients achieved EASI ≤ 3 or IGA ≤ 1 , increasing to 76.3% and 77.2% by 52 weeks, and reaching 90.9% in the group followed for > 3 years. A total of 38 patients (13.5%) discontinued dupilumab, mainly due to inefficacy (5.6%) and AEs (1.2%).

Conclusion: Dupilumab effectively reduced AD severity within the first few weeks, with most patients achieving mild/minimal disease activity or complete clearance by year 1. The observed safety profile was consistent with known data. High persistence rates up to 4-years suggest satisfaction with dupilumab long-term safety and efficacy profile in managing moderate-to-severe AD.

Introduction

Q2 Dupilumab (Dupixent[®]) is a fully human IgG4 monoclonal antibody that inhibits both IL-4 and IL-13 by antagonizing the IL-4 receptor. It has been the first biologic approved by the EMA for the treatment of

moderate-to-severe Atopic dermatitis (AD) in adults and adolescents (≥ 12 years) and severe AD in children aged 6 months–11 years who are eligible for systemic therapy.¹ EMA approval was based on clinical trials showing significant reductions in clinical signs and symptoms and improvements in patient-reported outcomes, including sleep and QoL.¹ Furthermore, the 5-year long-term safety and efficacy profile has been demonstrated.^{2–4} Current European clinical practice guidelines include dupilumab as an option for adults and adolescents with moderate-to-severe AD.⁵ However, real-world patients often differ from those in clinical trials, and treatment persistence can be influenced by various

* Corresponding author.

E-mail address: silvestre.jfr@gmail.com (J.F. Silvestre).

¹ Dermatology Department.

² Hospital Farmacy Department.

<https://doi.org/10.1016/j.ad.2025.104563>

Received 3 October 2024; Accepted 13 July 2025

Available online xxx

0001-7310/© 2025 AEDV. Published by Elsevier España, S.L.U. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

32 clinical and behavioral factors that reflect the balance of safety, effi-
 33 cacy, tolerability, and adherence, and is a useful measure of therapeutic
 34 value.⁶ Data on dupilumab persistence in Spain remain scarce, with
 35 only 1 study reporting 80% persistence at 2 years.⁷ This study eval-
 36 uates the long-term persistence, safety, and efficacy of dupilumab in
 37 adult patients with moderate-to-severe AD treated in 5 centers across
 38 Valencian Community (Spain).

39 Methods

40 Study design and population

41 This retrospective observational study included AD patients treated
 42 with dupilumab at 5 hospitals in Valencian Community (Spain). Inclu-
 43 sion criteria were: (1) ≥18 years old; (2) diagnosis of moderate-to-severe
 44 AD; (3) at least 1 dispensation of dupilumab treatment. Patients who
 45 met these criteria and initiated dupilumab at any date (first dispensa-
 46 tion was the index date) were followed until December 31st, 2021, or
 47 disenrollment.

48 Primary endpoints and measures

49 Baseline demographics and clinical characteristics, including age,
 50 sex, AD onset, atopic comorbidities, and previous treatment, were col-
 51 lected. Disease severity was assessed using the Eczema Area and Severity
 52 Index (EASI) and Investigator's Global Assessment (IGA) scores at base-
 53 line, 16 weeks, 24 weeks, 52 weeks, and the last visit during follow-up.

54 The primary endpoint included an assessment of the real-world
 55 persistence of dupilumab in adults with moderate-to-severe AD. Per-
 56 sistence, defined as the duration from initiation to discontinuation, was
 57 measured as the last day of dispensation plus the interval until the next
 58 scheduled administration. Kaplan–Meier analysis estimated persistence
 59 at 1, 2, 3, and 4 years.

60 Secondary endpoints included characterizing patients who initiated
 61 dupilumab, reasons for discontinuation, safety and efficacy. Efficacy
 62 was assessed by changes in EASI and IGA scores from baseline to each
 63 assessment date over 4 years. Safety was estimated by the percentage of
 64 patients reporting intolerance or AEs and discontinuing treatment.

65 Subgroup analyses were performed according to age (18–35, 36–65,
 66 and >65 years) to assess variations in disease presentation and treat-
 67 ment response across life stages; dosing regimen (SmPC vs adapted) to
 68 evaluate real-world needs for dose intensification or interval extension
 69 and their effects on outcomes; and total population vs high responders
 70 (defined as achieving EASI ≤3 at week 16), as evaluating high respon-
 71 ders helped identify characteristics associated with robust efficacy and
 72 inform personalized treatment strategies and resource optimization.
 73 Adherence was assessed using the medication possession ratio (MPR),
 74 calculated from pharmacy dispensing records.

75 Statistical analysis

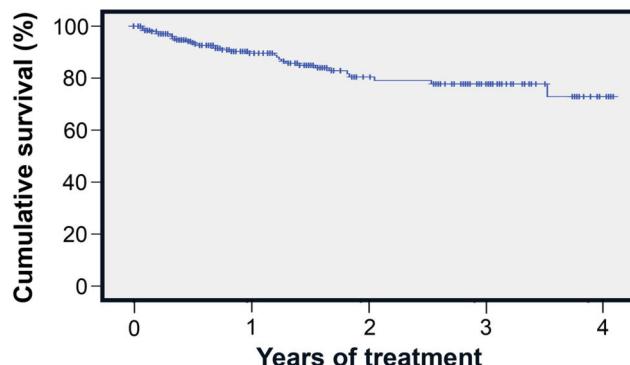
76 Chi-square and Fisher's exact tests assessed associations across
 77 variables. Group comparisons used ANOVA, Student's *t* test, and non-
 78 parametric Mann–Whitney and Wilcoxon tests. Multivariate analysis,
 79 including principal component analysis, identified patient subgroups
 80 and defining variables. Hierarchical group analysis identified patterns
 81 of association between variables. Correlations between canonical vari-
 82 ables and derived algorithms integrated clinical and analytical variables
 83 to classify patients by their response to the drug.

Table 1

Demographics characteristics and baseline parameters of the study population. Q5

Total sample, <i>n</i> (%)	251 (100)
Age, mean \pm SD	43.6 \pm 18.9
18–35 years, <i>n</i> (%)	101 (40.2)
36–65 years, <i>n</i> (%)	109 (43.4)
>65 years, <i>n</i> (%)	41 (16.3)
Sex (male), <i>n</i> (%)	149 (59.4)
Years since AD diagnosis, mean \pm SD	14.5 \pm 14.8
Number of atopic comorbidities	
≥1 atopic comorbidity, <i>n</i> (%)	162 (64.5)
≥2 atopic comorbidity, <i>n</i> (%)	103 (41.0)
≥3 atopic comorbidity, <i>n</i> (%)	48 (19.1)
Type of atopic comorbidity	
Allergic rhinitis, <i>n</i> (%)	130 (51.8)
Asthma, <i>n</i> (%)	87 (34.7)
Food allergy, <i>n</i> (%)	40 (15.9)
Allergic conjunctivitis, <i>n</i> (%)	66 (26.3)
Chronic rhinosinusitis or nasal polyposis, <i>n</i> (%)	7 (2.8)
Eosinophilic esophagitis, <i>n</i> (%)	1 (0.4)
Baseline EASI, mean \pm SD	27.9 \pm 8.3
Baseline IGA, median \pm SD	4.0 \pm 0.5
No. of prior treatments (average)	
≥1 previous treatment, <i>n</i> (%)	242 (96.4)
≥2 previous treatments, <i>n</i> (%)	196 (78.1)
≥3 previous treatments, <i>n</i> (%)	93 (37.1)
Treatment history	
Oral corticosteroids, <i>n</i> (%)	230 (91.6)
Cyclosporine, <i>n</i> (%)	178 (70.9)
Methotrexate, <i>n</i> (%)	70 (27.9)
Azathioprine, <i>n</i> (%)	50 (19.9)
Phototherapy, <i>n</i> (%)	46 (18.3)
Off-label biologics therapy, <i>n</i> (%)	37 (14.7)
Mycophenolate, <i>n</i> (%)	15 (6.0)
Immunoglobulins, <i>n</i> (%)	5 (2.0)

EASI: Eczema Area and Severity Index; IGA: Investigator's Global Assessment; SD: standard deviation.


84 Results

85 Clinical characteristics of the study population

86 The baseline characteristics of the study population are shown in
 87 Table 1. The study included a total of 251 adult patients (59.4%, men;
 88 mean age, 43.6 years). The average time since disease onset was 14.5
 89 years, with 51.4% being diagnosed in adulthood. Almost two-thirds
 90 (64.5%) had at least 1 coexisting T2 inflammatory disease (41% and
 91 19% had at least 2 or 3, respectively). Allergic rhinitis was most common
 92 (52%), followed by asthma (35%) and allergic conjunctivitis (26%). At
 93 baseline, patients had a mean EASI of 27.9 and a median IGA score of
 94 4, indicating predominantly severe AD. On average, patients had used
 95 2.5 systemic treatments prior to dupilumab, with 78.1% having received
 96 >2 systemic treatments and 21% having received >4. Widely used sys-
 97 temic drugs included corticosteroids (91.6%), cyclosporine (70.9%), and
 98 methotrexate (27.9%). There were no differences in baseline character-
 99 istics across age or regimen subgroups.

100 Treatment regimen and adherence during follow-up

101 Patients were followed for a mean of 1.5 years; 51.4% (129 patients)
 102 had at least 1 year of follow-up, with a maximum exposure of 211 weeks
 103 (4 years). A total of 87.6% (220 patients) followed the SmPC dosing
 104 regimen, while 12.4% (31 patients) had customized dosing adjustments. Of

Fig. 1. Patient persistence by Kaplan-Meier analysis.

these, 2% (5 patients) intensified treatment to 300 mg every 7 days, and 10% (26 patients) optimized it to 300 mg every 21 to 42 days. Notably, 95% of patients were fully adherent to dupilumab, as measured by the MPR.

109 Reasons for discontinuation

110 At data lock, 86.4% (217 patients) remained on dupilumab, whereas 111 13.5% (34 patients) had discontinued treatment. When discontinuations 112 were categorized by reason (Table 2), 5.6% were due to lack of effi- 113 cacy, 2.8% to patient decision, 2.4% to loss to follow-up, and 1.6% 114 to adverse events or intolerance. Most discontinuations (62%) occurred 115 before week 52 and were attributed to inadequate efficacy. No differ- 116 ences in discontinuation rates were observed across age groups or dosing 117 regimen subgroups.

118 Patient persistence analysis

119 The persistence of dupilumab was 90%, 80%, 78%, and 73% at 120 1, 2, 3, and 4 years, respectively (Fig. 1 and Supp. Table 1). Persis- 121 tence in patients with high response to dupilumab (EASI \leq 3 at 16 122 weeks) remained $>$ 85% throughout the 4 years (94%, 86%, 86%, and 123 86%, respectively) (Supp. Table 1). No differences in persistence were 124 observed among age or regimen subgroups.

125 Efficacy

126 Treatment with dupilumab resulted in a rapid and significant reduc- 127 tion in EASI/IGA scores from baseline (EASI 27.9; IGA 4) to week 16 128 (EASI 5.9; IGA 1.5) ($p < 0.0001$). EASI/IGA scores continued to decrease 129 progressively until nearly complete clearance with ongoing treatment 130 (Fig. 2A and B). At 16 weeks, 67.2% of patients achieved EASI-75, 131 increasing to $>$ 80% at week 24. EASI-90 was achieved in 44.4% at 16 132 weeks, increasing to 63.5%, 76.3%, 74.1%, 86.2%, and 90% at 24, 52, 133 53–104, 105–156, and $>$ 156 weeks, respectively (Fig. 2C).

134 The proportion of mild AD (EASI \leq 7) was 70.6% at 16 weeks and 135 94.8% at 52 weeks (Fig. 2D). At 16 weeks, minimal or no disease (EASI 136 \leq 3 or IGA \leq 1) was achieved in 47.8% and 54.7% of patients, 137 respectively. These values increased to 76.3% and 77.2% at 52 weeks and 138 continued to rise to 90.9% in patients followed $>$ 156 weeks. Complete 139 AD clearance (IGA = 0) was achieved in 17.6% at 16 weeks, 38.2% at 52 140 weeks, and 72.7% in those followed $>$ 156 weeks (Fig. 2E). The reduc- 141 tion in EASI and IGA scores was consistent across all age and regimen 142 subgroups (Supp. Fig. 1).

143 Safety

144 In the overall cohort, 1.6% of patients discontinued for safety rea- 145 sons: 1 due to intolerance and 4 due to AEs, with only 1 drug-related

discontinuation (conjunctivitis) (Table 2). No differences in the safety profile were observed among age or regimen subgroups.

148 Discussion

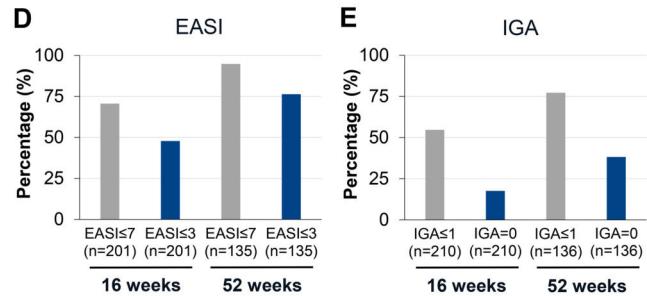
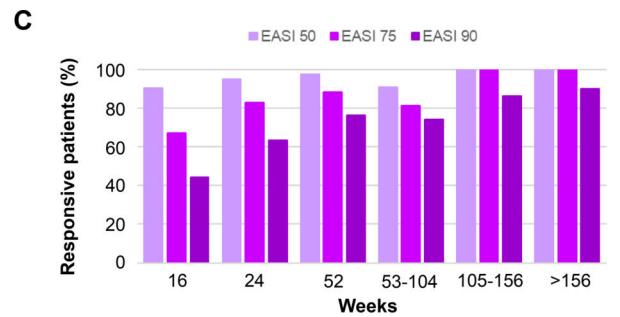
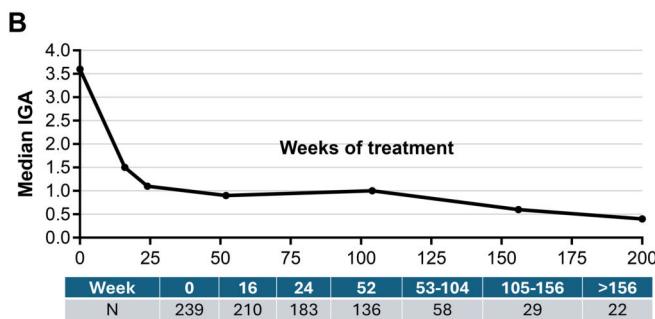
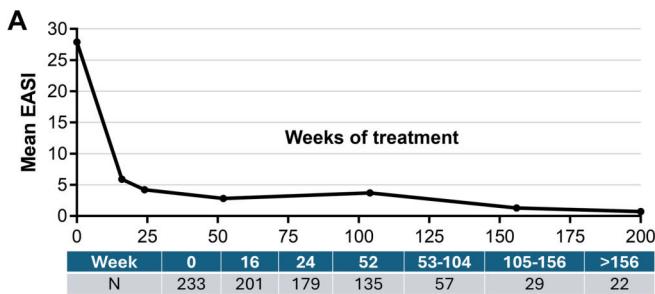
149 Long-term control of moderate-to-severe AD was extremely chal- 150 lenging with conventional therapies. Dupilumab has revolutionized AD 151 management, showing long-term remission in many patients.² How- 152 ever, conditions in clinical trials often differ from real-world settings, 153 necessitating evaluation in clinical practice.

154 This study revealed that nearly half of patients with AD had adult- 155 onset, challenging the notion of AD as solely a childhood disease. More 156 than 64% had at least atopic comorbidity, emphasizing the link between 157 AD and other T2 inflammatory diseases.^{8–12} Dupilumab has proven safe 158 and effective for several T2 conditions, offering this versatility a ther- 159 apeutic advantage for patients with multiple conditions.^{13–15} A total 160 of 14% had previously used off-label biologics, highlighting the lim- 161 ited number of treatments available before dupilumab. In this study, 162 the rate of dupilumab discontinuation was 13.5%, with 5.6% due to 163 lack of efficacy and 1.2% due to AEs, which is consistent with its estab- 164 lished safety profile and real-world studies in The Netherlands, Italy, and 165 Spain, reporting similar discontinuation rates (4%–14%) at the 2–4-year 166 follow-up.^{7,16,17} These findings support dupilumab as a valuable treat- 167 ment option, with low discontinuation due to ineffectiveness or side 168 effects.

169 In routine clinical practice, long-term safety and efficacy are related 170 to treatment persistence. Overall, dupilumab showed good persistence 171 rates of 90%, 80%, 78%, and 73% at 1, 2, 3, and 4 years, respectively. 172 Previous real-life studies reported 2-year survival rates ranging from 173 77% to 89%.^{16,18} Similar persistence was noted in 2 recent studies: a 174 Dutch cohort of 715 AD patients with survival rates of 90.3%, 85.4%, 175 and 78.6% after 1, 2, and 3 years, respectively¹²; and an Italian study 176 of 363 patients with AD reporting rates of 91.5%, 82.9%, 78.8%, and 177 76.4% at 1, 2, 3, and 4 years.¹⁷ Long-term efficacy, limited AEs, and 178 no drug-drug interactions or organ toxicity contributed to these high 179 survival rates.¹⁶

180 Regarding treatment efficacy, the mean baseline EASI score was 27.9 181 and IGA was 4, which is similar to those reported in clinical trials,¹⁹ 182 indicating the severity of patients with AD. Our study showed a rapid 183 response to dupilumab, with significant improvement seen early on, as 184 EASI dropped to 5.9 and IGA to 1.5 at 16 weeks. The PROSE registry,²⁰ 185 conducted in real life over 3 years, reported similar short-term results, 186 with EASI around 5.3 after 3–6 months. Since their baseline EASI was 187 ~16 vs our 28, our short-term results are comparable or better (5.9 in 4 188 months).

189 In our study, a total of 70% of patients achieved EASI-75 at 16 weeks, 190 increasing to $>$ 85% at 24 and 52 weeks. Clinically, this means some 191 persistent eczema requiring almost continuous topical treatment. However, 192 our stretch target is EASI-90, indicating occasional corticosteroid use, 193 and response rates were 44% at 16 weeks and nearly 80% at 52 weeks, 194 with most patients clear of lesions. These rates were higher than those 195 in a recent meta-analysis, where 59.8% and 26.8% achieved EASI-75 196 and EASI-90, respectively, after 16 weeks of dupilumab therapy.²¹





197 The high burden of AD on patient QoL demands continuous optimiza- 198 tion of therapeutic targets, ensuring patients achieve EASI \leq 3 or IGA 199 \leq 1. Real-world studies report IGA clear/minimal scores in 38%–60% 200 of patients within 3–4 months of dupilumab initiation.^{22,23} Our study 201 found minimal or complete clearance (IGA 0–1) in 54.7% at 16 weeks, 202 increasing to 77.2% at 52 weeks, with further improvement over time. 203 Long-term data indicated sustained responses, with EASI and IGA score 204 reductions maintained up to 4 years. The percentage of patients achiev- 205 ing IGA 0–1 at 104 weeks (68%) was comparable to open-label extension 206 studies at weeks 76 (57.8%) and 100 (58.1%).^{3,24}

207 Two other studies on the long-term real-world drug survival of 208 dupilumab have been recently published, further reinforcing its role in 209

Table 2

Reasons for treatment discontinuation.

Treatment discontinuation, n (%)	Total 34 (13.5)	Year 121 (8.4)	> Year 114 (5.6)
<i>Lack of efficacy</i>	14 (5.6)	9 (3.6)	5 (2.0)
<i>Patient's decision</i>	7 (2.8)	3 (1.2)	4 (1.6)
<i>Loss of follow-up</i>	6 (2.4)	3 (1.2)	4 (1.6)
<i>Adverse events</i>	4 (1.6)	3 (1.2)	1 (0.4)
Conjunctivitis	1 (0.4)	1 (0.4)	0
Liver cirrhosis decompensation and death unrelated to dupilumab	1 (0.4)	1 (0.4)	0
Death due to kidney failure, unrelated to dupilumab	1 (0.4)	1 (0.4)	0
Death due to prostate cancer, unrelated to dupilumab	1 (0.4)	0	1 (0.4)
<i>Intolerance</i>	1 (0.4)	1 (0.4)	0
<i>Diagnostic change</i>	1 (0.4)	1 (0.4)	0
<i>Not recorded</i>	1 (0.4)	1 (0.4)	0

Fig. 2. Efficacy of dupilumab during follow-up. (A) Mean EASI progression; (B) median IGA progression; (C) percentage of patients achieving EASI-50, EASI-75 and EASI-90 during the follow-up; (D) percentage of patients with EASI ≤ 7 and EASI ≤ 3 at 16 and 52 weeks, respectively; (E) percentage of patients with IGA ≤ 1 and IGA = 0 at 16 and 52 weeks, respectively.

209 managing AD. Barei et al.²⁵ reported a 74.1% drug survival rate at 65
 210 months, highlighting the 5-year dupilumab sustained safety and efficacy
 211 profile, while Torres et al.²⁶ demonstrated an 82.0% drug survival rate at
 212 30 months, with significant improvements in EASI (89.3% decrease from
 213 baseline). These outcomes are consistent with our findings, including
 214 substantial reductions in EASI and persistence rates of 90% and 80% at 1
 215 and 2 years, respectively. Both studies corroborate dupilumab safety and
 216 durability, with conjunctivitis being the most common adverse event,
 217 consistent with our data. These comparisons strengthen the evidence
 218 for dupilumab's long-term utility in diverse populations.

219 In our study, only 1.2% of patients who discontinued dupilumab
 220 treatment did so due to AEs, confirming an excellent long-term safety
 221 profile and product value. Conjunctivitis was the only common reported
 222 AE although is important to highlight that it was a high percentage of
 223 patients with baseline allergic conjunctivitis before starting treatment
 224 with dupilumab. In the 4-year open-label study of dupilumab, conjunc-
 225 tivitis appeared in 20% of patients, although only 9.6% were related
 226 to dupilumab and most cases were mild with only 0.5% of patients
 227 finally discontinuing treatment due to conjunctivitis.⁴ We have learnt
 228 that conjunctivitis appears mainly at the beginning of the treatment and

most cases can be prevented with hyaluronic eye drops. In the clinical
 229 program of the rest of dupilumab indications (eosinophilic esophagitis,
 230 asthma, chronic rhinosinusitis with nasal polyps, prurigo nodularis), the
 231 rate of conjunctivitis is very low, so we can assume that it is an AE asso-
 232 ciated only with AD. The real-world experience reported higher rates of
 233 dupilumab discontinuation due to AEs than us (3%–4.9%), but we agree
 234 with other real-life studies that conjunctivitis or ocular surface disease
 235 is the most common AE associated with dupilumab.¹⁶ Of note, several
 236 studies have demonstrated that AD, comorbid asthma and rhinitis are
 237 risk factors for ocular surface disease.^{27,28} Furthermore, several epidemi-
 238 ology studies have revealed that patients with more severe AD have
 239 an increased risk of developing conjunctivitis, even in the absence of
 240 biologics.^{27,28}

241 Our study has several strengths, including high therapeutic adher-
 242 ence, conferring robustness and validity to the results. However, there
 243 are important limitations to consider, including the limited sample
 244 size, particularly at later time points, where fewer patients remained
 245 under observation, reducing the generalizability of long-term persis-
 246 tence conclusions. Specifically, while our persistence rates at 3 and
 247 4 years remained high (78% and 73%, respectively), the number of
 248

patients at these time points was considerably lower, making these estimates less robust than those obtained within the first 2 years. Therefore, the most reliable persistence data come from the first 2 years, where patient numbers were larger. Additionally, the observational and retrospective design and lack of a control arm further limits the study. The data lock was also set before the introduction of new systemic therapies. Since our study followed patients until December 2021, it does not account for the impact of new systemic therapies introduced afterwards. The availability of alternative treatments may lead to different real-world outcomes for dupilumab if analyzed today. Therefore, future studies should evaluate dupilumab persistence in the context of a broader range of available therapies to better understand treatment retention trends in a competitive therapeutic landscape. This, along with the small number of patients > 2 years in our study, highlights the need for future studies with extended follow-up. In this regard, the ongoing SireDipi2 study aims to evaluate dupilumab persistence in a broader population over a longer period, providing more robust data for future analyses and comparisons with new systemic therapies.

Conclusions

This study corroborates findings from dupilumab clinical trials and other real-world studies, supporting its long-term use in AD patients and confirming its clinical benefits. The results demonstrate that dupilumab is effective in adults with moderate-to-severe AD, offering significant improvements in global AD severity. The observed safety was consistent with the known profile, with no new safety signals identified over 4 years. Dupilumab showed high persistence, suggesting satisfaction among patients and healthcare professionals with its effectiveness, safety, and treatment regimen over time.

Ethical and legal aspects

This study was governed by the basic ethical principles of the Declaration of Helsinki.³⁸ Patient data were handled in line with current Spanish legislation on data protection (Organic Law 3/2018 of December 5 on the protection of personal data and guarantees of digital rights and the general regulation of data protection).

Funding

Study sponsored by Sanofi.

Conflicts of interest

Juan Francisco Silvestre has received speaking and/or consulting fees from Sanofi, Regeneron, Abbvie, Eli Lilly, Galderma, Leo Pharma, Novartis and Pfizer, and/or research funds from AbbVie, Almirall, Amgen, AstraZeneca, Bristol Meyer Squibb, Eli Lilly, Incyte, Leo Pharma, Novartis, Pfizer and Sanofi. Sergio Santos-Alarcón has received speaking and/or consulting fees and/or research funds from Almirall, Abbvie, Amgen, Pfizer, Novartis, Janssen-Cilag, Lilly, Leo Pharma, UCB Pharma, Pierre Fabre, Isdin and Sanofi. Amando Mengual-Sendra has received honoraria for attending symposia/congresses and/or for speaking and/or consulting, and/or research funds from Abbvie, AstraZeneca, GlaxoSmithKline, Sanofi, Stada and UCB Pharma. María Pilar Ortega-García has received honoraria for attending symposia/congresses and/or for speaking and/or consulting, and/or research funds from Sanofi, Pfizer and Biogen. Emilio Monte-Boquet has received speaking fees, training and/or research funds from Abbott/Abbvie, Amgen, Astellas, AstraZeneca, Baxalta, Bayer, Biogen, Bristol-Myers Squibb, Celgene, Chiesi, Eisai, Fresenius, Gilead, GSK, Ipsen, Janseen, Leo Pharma, Lilly, MSD, Merck-Serono, Novartis, Pfizer, Roche, Sanofi, Shire, Theramex UCB, and y ViiV. Noemí Pérez Prior has received honoraria for attending symposia/congresses and/or speaking and/or

consulting fees, and/or research funds from Sanofi-Aventis, S.A. Francisco Javier Miquel has received speaking and/or consulting fees from Sanofi, Regeneron, Abbvie, Eli Lilly, Leo Pharma, Novartis and Pfizer, and has participated as principal investigator in clinical trials sponsored by AbbVie, Amgen, and Sanofi. Joaquín Borras-Blasco has received honoraria for attending symposia/congresses and/or speaking and/or consulting fees, and/or research funds from Sanofi, Janssen, Pfizer and Biogen. The remaining authors declared no other conflicts of interest whatsoever.

Data availability

The authors thank the staff of the participant study centers for their contribution to this work. In addition, we thank Anchel González Barriga and Vanessa Marfil Vives of Medical Science Consulting (Spain) for providing editorial support, in the form of medical writing and assembling tables based on authors' detailed directions, collating author comments, copyediting, fact-checking, and referencing. Sanofi funded this editorial support. The data that support the findings of this study are available on request from the corresponding author. Data are not publicly available due to privacy or ethical restrictions.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version available at <https://doi.org/10.1016/j.ad.2025.104563>.

References

1. European Medicines Agency. An Overview of Dupixent and Why it is Authorised in the EU. Amsterdam [Internet]; 2023. Available from: https://www.ema.europa.eu/en/documents/overview/dupixent-epar-summary-public_en.pdf. Accessed 22 December 2023.
2. Blauvelt A, de Bruin-Weller M, Gooderham M, et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. *Lancet*. 2017;389:2287–2303, [http://dx.doi.org/10.1016/S0140-6736\(17\)31191-1](http://dx.doi.org/10.1016/S0140-6736(17)31191-1) [Epub 20170504].
3. Deleuran M, Thaci D, Beck LA, et al. Dupilumab shows long-term safety and efficacy in patients with moderate to severe atopic dermatitis enrolled in a phase 3 open-label extension study. *J Am Acad Dermatol*. 2020;82:377–388, <http://dx.doi.org/10.1016/j.jaad.2019.07.074> [Epub 20190730].
4. Beck LA, Deleuran M, Bissonnette R, et al. Dupilumab provides acceptable safety and sustained efficacy for up to 4 years in an open-label study of adults with moderate-to-severe atopic dermatitis. *Am J Clin Dermatol*. 2022;23:393–408, <http://dx.doi.org/10.1007/s40257-022-00685-0> [Epub 20220503].
5. Wollenberg A, Kinberger M, Arents B, et al. European guideline (EuroGuiderm) on atopic eczema: Part I – systemic therapy. *J Eur Acad Dermatol Venereol*. 2022;36:1409–1431, <http://dx.doi.org/10.1111/jdv.18345>.
6. de la Cueva Dobao P, Notario J, Ferrández C, et al. Expert consensus on the persistence of biological treatments in moderate-to-severe psoriasis. *J Eur Acad Dermatol Venereol*. 2019;33:1214–1223, <http://dx.doi.org/10.1111/jdv.15600> [Epub 20190429].
7. Pereyra-Rodríguez JJ, Domínguez-Cruz J, Ruiz-Villaverde R, et al. Drug survival of systemic and biological treatments for moderate-to-severe atopic dermatitis in adults: a multicentre retrospective observational study. *Br J Dermatol*. 2021;184:175–176, <http://dx.doi.org/10.1111/bjd.19428> [Epub 20200903].
8. Fujii M. Current understanding of pathophysiological mechanisms of atopic dermatitis: interactions among skin barrier dysfunction, immune abnormalities and pruritus. *Biol Pharm Bull*. 2020;43:12–19, <http://dx.doi.org/10.1248/bpb.b19-00088>.
9. Furue M, Ulzii D, Vu YH, Tsuji G, Kido-Nakahara M, Nakahara T. Pathogenesis of atopic dermatitis: current paradigm. *Iran J Immunol*. 2019;16:97–107, <http://dx.doi.org/10.22034/IJI.2019.80253>.
10. David Bothe W, Tarbox JA, Tarbox MB. Atopic dermatitis: pathophysiology. *Adv Exp Med Biol*. 2017;1027:21–37, http://dx.doi.org/10.1007/978-3-319-64804-0_3.
11. Silverberg JI, Kantor R. The role of interleukins 4 and/or 13 in the pathophysiology and treatment of atopic dermatitis. *Dermatol Clin*. 2017;35:327–334, <http://dx.doi.org/10.1016/j.det.2017.02.005> [Epub 20170422].
12. de Bruin-Weller M, Pink AE, Ferrucci SM, et al. Use of systemic therapies in adults with atopic dermatitis: 12-month results from the European prospective observational study in patients eligible for systemic therapy for atopic dermatitis (EUROSTAD). *J Dermatol Treat*. 2022;33:2565–2570, <http://dx.doi.org/10.1080/0954634.2022.2038361> [Epub 20220308].
13. Boguniewicz M, Beck LA, Sher L, et al. Dupilumab improves asthma and sinonasal outcomes in adults with moderate to severe atopic dermatitis. *J Allergy Clin Immunol Pract*. 2021;9, <http://dx.doi.org/10.1016/j.jaip.2020.12.059>, 1212–23.e6 [Epub 20210113].

377 14. Pose K, Laorden D, Hernández N, Villamañán E, Quirce S, Domínguez-Ortega
378 J. Efficacy of dupilumab for severe atopic dermatitis co-occurring with asthma
379 in a real-world setting. *J Investig Allergol Clin Immunol*. 2023;33:217–219,
380 <http://dx.doi.org/10.18176/jiaci.0837> [Epub 20220620].

381 15. Nettis E, Patella V, Lombardo C, et al. Efficacy of dupilumab in atopic
382 comorbidities associated with moderate-to-severe adult atopic dermatitis. *Allergy*.
383 2020;75:2653–2661, <http://dx.doi.org/10.1111/all.14338> [Epub 20200518].

384 16. Spekhorst LS, Ariens LFM, van der Schaft J, et al. Two-year drug survival of
385 dupilumab in a large cohort of difficult-to-treat adult atopic dermatitis patients com-
386 pared to cyclosporine A and methotrexate: results from the BioDay registry. *Allergy*.
387 2020;75:2376–2379, <http://dx.doi.org/10.1111/all.14324> [Epub 20200505].

388 17. Pezzolo E, Rossi M, Caroppo F, et al. Long-term drug survival of dupilumab
389 and associated predictors in moderate-to-severe atopic dermatitis: a real-world
390 prospective cohort study. *J Eur Acad Dermatol Venereol*. 2023;37:e757–e759,
391 <http://dx.doi.org/10.1111/jdv.18889> [Epub 20230206].

392 18. Georgakopoulos JR, Felfeli T, Drucker AM, Jo CE, Piguet V, Yeung J. Two-
393 year efficacy, safety, and drug survival of dupilumab for atopic dermatitis: a real-world
394 Canadian multicenter retrospective study. *JAAD Int*. 2021;4:67–69,
395 <http://dx.doi.org/10.1016/j.jdin.2021.06.001> [Epub 20210731].

396 19. Simpson EL, Gadkari A, Worm M, et al. Dupilumab therapy provides clini-
397 cally meaningful improvement in patient-reported outcomes (PROs): a phase
398 IIIb, randomized, placebo-controlled, clinical trial in adult patients with moder-
399 ate to severe atopic dermatitis (AD). *J Am Acad Dermatol*. 2016;75:506–515,
400 <http://dx.doi.org/10.1016/j.jaad.2016.04.054> [Epub 20160604].

401 20. Simpson EL, Lockshin B, Lee LW, Chen Z, Daoud M, Korotzer A. Real-world effec-
402 tiveness of dupilumab in adult and adolescent patients with atopic dermatitis: 2-year
403 interim data from the PROSE registry. *Dermatol Ther (Heidelb)*. 2024;14:261–270,
404 <http://dx.doi.org/10.1007/s13555-023-01061-4> [Epub 20240104].

405 21. Halling AS, Loft N, Silverberg JI, Guttman-Yassky E, Thyssen JP. Real-
406 world evidence of dupilumab efficacy and risk of adverse events: a sys-
407 tematic review and meta-analysis. *J Am Acad Dermatol*. 2021;84:139–147,
408 <http://dx.doi.org/10.1016/j.jaad.2020.08.051> [Epub 20200818].

409 22. de Wijs LEM, Bosma AL, Erler NS, et al. Effectiveness of dupilumab treat-
410 ment in 95 patients with atopic dermatitis: daily practice data. *Br J Dermatol*.
411 2020;182:418–426, <http://dx.doi.org/10.1111/bjd.18179> [Epub 20191016].

412 23. Jo CE, Georgakopoulos JR, Ladda M, et al. Evaluation of long-term efficacy,
413 safety, and reasons for discontinuation of dupilumab for moderate to severe
414 atopic dermatitis in clinical practice: a retrospective cohort study. *J Am Acad Der-
415 matol*. 2020;82:1530–1532, <http://dx.doi.org/10.1016/j.jaad.2020.02.029> [Epub
416 20200216].

417 24. Beck LA, Thaçi D, Deleuran M, et al. Dupilumab provides favorable safety
418 and sustained efficacy for up to 3 years in an open-label study of adults
419 with moderate-to-severe atopic dermatitis. *Am J Clin Dermatol*. 2020;21:567–577,
420 <http://dx.doi.org/10.1007/s40257-020-00527-x>.

421 25. Barei F, Calzari P, Valtellini L, et al. Five-year real-world drug survival
422 of dupilumab in severe atopic dermatitis and associate predictors. *J Derma-
423 tolog Treat*. 2024;35:2404718, <http://dx.doi.org/10.1080/09546634.2024.2404718>
424 [Epub 20241013].

425 26. Torres T, Cruz MJ, Gonçalo M, et al. Dupilumab in patients with atopic dermatitis:
426 a multicentric, long-term, real-world Portuguese study. *Dermatol Ther (Hei-
427 delb)*. 2024;14:2209–2221, <http://dx.doi.org/10.1007/s13555-024-01235-8> [Epub
428 20240722].

429 27. Rønstrand ATM, Hansen PM, Halling AS, et al. Factors associated with ocular surface
430 disease and severity in adults with atopic dermatitis: a nationwide survey. *J Eur Acad
431 Dermatol Venereol*. 2022;36:592–601, <http://dx.doi.org/10.1111/jdv.17832> [Epub
432 20211215].

433 28. Zhou W, Cai J, Li Z, Lin Y. Association of atopic dermatitis with conjunctivitis and
434 other ocular surface diseases: a bidirectional two-sample Mendelian randomization
435 study. *J Eur Acad Dermatol Venereol*. 2023, <http://dx.doi.org/10.1111/jdv.19048>
436 [Epub 20230315].