

Original Article

5 Oral Roflumilast for Long-term Management of Behcet Spectrum Disorders:
6 A Multicenter Observational Analysis

Q1 R. Peñuelas Leal ^{a,*}, J.A. Peñuelas Ruiz ^b, Á. González García ^a, L. Bagan ^c, C. Labrandero Hoyos ^a,
8 A. Grau Echevarría ^a, V. Zaragoza Ninet ^a, G. Pérez Pastor ^a, L. García Fernández ^d, M. Linares Barrios ^e,
9 D. Blaya Imbernon ^a, M. Finello ^a, E. Perez Zafrilla ^a, E. Diez Recio ^a, M. Martí Cabrera ^f, J. Bagan ^{c,g},
10 V. Alegre De Miquel ^{a,h}

^a Dermatology Department, Consorci Hospital General Universitari de Valencia, Valencia, Spain^b Gandia Public Health Centre, Gandia, Spain^c Oral Medicine Department, University of Valencia, Valencia, Spain^d Dermatology Department, Hospital Universitario San Juan, Alicante, Spain^e Dermatology Department, Hospital Puerta del Mar, Cádiz, Spain^f Pharmacology Department, University of Valencia, Valencia, Spain^g Department of Oral and Maxillofacial Surgery, Consorci Hospital General Universitari de Valencia, Valencia, Spain^h Dermatology Department, University of Valencia, Valencia, Spain

ARTICLE INFO

Keywords:

Recurrent aphthous stomatitis
 Behcet's disease
 Behcet spectrum disorders
 Behcet
 Roflumilast
 Oral ulcer
 Genital ulcer
 Phosphodiesterase 4 inhibitor
 Apremilast

ABSTRACT

Background: Recurrent aphthous stomatitis (RAS) and Behcet's disease (BD) are part of the Behcet spectrum disorders (BSD), sharing genetic traits and characterized by recurrent ulcers. No systemic treatment is approved for RAS or incomplete BD, despite significant quality-of-life impacts.

Objective: To evaluate the efficacy of roflumilast, a PDE4 inhibitor, in BSD patients and compare responses between RAS and BD.

Methods: This analytical observational study included a total of 33 patients with BSD (22, RAS; 11, BD) from 5 Spanish centers, followed over 52 weeks. Data were collected retrospectively and prospectively, assessing flare-ups, ulcers, pain, and duration. Statistical models compared outcomes across treatment periods.

Results: Roflumilast significantly reduced all studied response variables, with no loss of long-term efficacy. Differences between RAS and BD were minimal and clinically irrelevant. Adverse events occurred in 63% of patients, mostly mild and self-limiting, with tolerability improved through dose adjustments. Two patients (6.25%) dropped out due to adverse events.

Conclusion: Roflumilast is effective for managing BSD, offering a safe option to address unmet needs in RAS and BD. Its favorable safety profile and long-term efficacy support its use in the routine clinical practice.

21 Introduction

Q2 Oral ulceration affects up to 25% of the population and a higher
23 percentage of young patients.¹ Recurrent aphthous stomatitis (RAS) is
24 characterized by recurrent painful oral ulcers not attributable to local
25 trauma, infection or systemic disease. It affects between 5% and 25%
26 of the population.² Behcet's disease (BD) is a relapsing multisystemic
27 vasculitis, including oral ulcers, genital ulcers and/or different systemic
28 signs.³ Although, historically, RAS and BD have been considered inde-

pendent conditions, recent studies have identified genetic similarities between RAS and BD, suggesting a spectrum of disease that has been named "Behcet spectrum disorders" (BSD).^{1,4} In this spectrum, RAS is the mildest sign and BD the most severe one.

Treatment of RAS and the mucocutaneous phenotype of BD aims to improve the patients' quality of life by suppressing inflammation and preventing relapses.^{5,6} However, there is no approved systemic treatment for RAS and incomplete BD, despite its significant impact on quality of life. Therefore, there is an unmet need for a wider range of therapeutic options.¹ First-line therapies generally include topical therapies, while second-line options often include immunosuppressants or systemic immunomodulators that require close monitoring or may have significant adverse effects (AEs).^{1,5,6}

^{*} Corresponding author.**Q1** E-mail address: rodr_pleal@hotmail.com (R. Peñuelas Leal).

<https://doi.org/10.1016/j.ad.2025.104561>

Received 2 February 2025; Accepted 15 May 2025

Available online xxx

0001-7310/© 2025 Published by Elsevier España, S.L.U. on behalf of AEDV. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

42 It has been suggested that the overlap in genetic susceptibility loci
 43 between BSD conditions could be extrapolated to treatment strategies.⁴
 44 Demonstrating this genetic-therapeutic correlation could allow different
 45 clinical presentations of the spectrum (such as incomplete BD, which do
 46 not fit into any of the conditions) to benefit from former studies and/or
 47 approved treatments in other conditions of the spectrum. However, to
 48 our knowledge, no study has ever been conducted where the efficacy of
 49 a treatment in different conditions of the spectrum has been analyzed
 50 simultaneously.

51 We have studied the efficacy of roflumilast, a PDE4 inhibitor
 52 (PDE4i), in patients with RAS and BD at 12 weeks, which is notable
 53 for its efficacy and favorable safety profile.^{7,8}

54 This study aims to describe and analyze the efficacy of roflumilast in
 55 the long-term treatment of BSD and to assess, using the same methodol-
 56 ogy, whether there are differences in effectiveness between pathologies
 57 considered to be at the extremes of the spectrum.

58 Methods

59 Study design

60 We conducted this analytical observational 2-cohort study with
 61 ambispective follow-up with participation of 5 Spanish centers. Patient
 62 data were collected from health records and/or direct anamnesis, both
 63 retrospectively and prospectively. Demographic, clinical and outcome
 64 variables were collected. Outcome variables included the number of
 65 flare-ups (NFU), defined as the occurrence of at least 1 ulcer after a
 66 period of remission, the number of oral ulcers (NOU), the number of
 67 genital ulcers (NGU), the pain produced by ulcers assessed with the numeric
 68 pain scale (pain-NRS) and the duration of ulcers in days (DU). NFU was
 69 recorded between 0 and 4. Patients with continuous ulcers without
 70 periods of remission were categorized as grade 4. NOU, NGU, DU (in days),
 71 and pain NRS (0–10) were recorded as discrete numerical variables.

72 The response variables NFU, NOU and NGU were compared in 5 time
 73 periods: the last 3 months without treatment (WT), the first 3 months
 74 of roflumilast treatment (RT3), months 4–6 (RT6), months 7–9 (RT9)
 75 and months 10–12 of treatment (RT12). The variables DU and pain-
 76 NRS were compared between the WT period and 52 weeks of roflumilast
 77 treatment (RT).

78 Other data collected included the presence of other signs associated
 79 with Behcet's disease, the roflumilast dose used at each moment and
 80 the presence of AEs and their progression over time. If the drug was
 81 withdrawn prior to 52 weeks, the cause was detailed.

82 Demographic, clinical and outcome variables were collected retro-
 83 spectively during the WT period and while on roflumilast until study
 84 approval by the medical research ethics committee of the principal
 85 investigator's center. Subsequently, data were collected prospectively.

86 This study was approved by the medical research ethics committee
 87 of the principal investigator's center.

88 Study population

89 Inclusion criteria

- 90 - Patients diagnosed with BD based on the ICBD 2013 criteria.⁹
- 91 - Patients diagnosed with RAS who presented quality of life impairment
 92 that justified the use of systemic treatment.
- 93 - Patients with BD or RAS who have started treatment with roflumilast
 94 prior to the inclusion of their center in the study.

95 Exclusion criteria

- 96 • Patients with oral or genital ulcers due to other conditions, such
 97 as infectious ulcers, anemia, traumatic ulcers, inflammatory bowel
 98 disease, celiac disease, systemic lupus erythematosus, Sjögren's syn-
 99 drome, and drug-related tumors or ulcers.

Endpoints

100 The primary endpoint was to evaluate the reduction in the NFU
 101 during treatment with roflumilast vs the untreated period. Secondary
 102 endpoints included assessing reductions in NOU, NGU, pain-NRS and
 103 DU during roflumilast treatment. Additional endpoints were to deter-
 104 mine whether treatment effectiveness varied over time or by the specific
 105 BSD disease and assess the safety profile of the treatment.

Statistical analysis

107 Statistical analysis was performed using IBM SPSS statistics software
 108 version 26.0 and OpenEpi epidemiological calculator. Values were con-
 109 sidered statistically significant if $p < 0.05$. Bonferroni corrections have
 110 been applied in the multiple comparisons analyses.

111 Statistical analysis of NFU, NOU and NGU variables has been per-
 112 formed using a generalized linear mixed model (GLMM) with a Poisson
 113 distribution and log link. Follow-up time was added as an offset variable
 114 to model rates instead of counts. Repeated measures linear mixed mod-
 115 els (LMM) with normal distribution and identity link were applied in
 116 the analysis of the pain-NRS and DU variables. Pathology was included
 117 in the models to evaluate its role as a differentiating factor in treatment
 118 efficacy.

119 A sensitivity analysis was performed to investigate the potential
 120 impact of loss to follow-up (treatment withdrawals) on the esti-
 121 mated effectiveness of roflumilast. The main scenario was obtained
 122 by imputing loss to follow-up using GLMM and LMM (intention-to-
 123 treat approach). Alternative scenarios included carrying forward the last
 124 observed data of patients who withdrew (intention-to-treat), analysis of
 125 complete cases and a scenario in which all losses were assumed to show
 126 a subsequent worsening of response variables (worst-case scenario).
 127 To handle violations of normality and low sample size assumptions,
 128 Kenward–Roger Restricted Maximum Likelihood Estimation (REML)
 129 methods¹⁰ were applied.

Results up to 52 weeks

Patients

131 A total of 33 patients with BSD were studied, 11 diagnosed with BD
 132 and 22 with RAS. The clinical and demographic features and therapies
 133 received are shown in Table 1. While on roflumilast, 0 patient received
 134 concomitant therapy. Clinical controls were performed, on average,
 135 every 30.6 days.

Roflumilast treatment

138 Roflumilast was started in 20 patients at 250 µg/day, in 9 patients
 139 at 125 µg/day for 7 days and 250 µg/day thereafter, in 2 patients
 140 at 500 µg/day, and in 2 patients at 125 µg/day with no subsequent
 141 increase.

142 Maintenance dose was 500 µg/day in 9 patients, 250 µg/day in 18
 143 patients and 125 µg/day in 3. In the BD group, 6 patients (54.5%)
 144 remained on 500 µg/day, 4 (36.4%) on 250 µg/day and 1 (9%)
 145 on 125 µg/day. In the RAS group, 3 patients (15.8%) remained on
 146 500 µg/day, 14 (73.7%) on 250 µg/day, and 2 (10.5%) on 125 µg/day.

Efficacy

148 The analysis revealed a statistically significant reduction in all
 149 response variables (NFU, NOU, NGU, DU, and pain-NRS) during the
 150 treatment period (RT3, RT6, RT9 and RT12 or RT) vs the untreated
 151 period (WT) (Fig. 1 and Table 2).

152 In most scenarios, no significant differences were observed between
 153 treatment periods, indicating no loss or gain in efficacy over time.
 154 Disease-specific analysis revealed no statistically significant differences

Table 1

Q5 Baseline demographic and clinical characteristics of the patients.

Characteristic	Baseline demographic and clinical characteristics of the patients ^a		
	RAS n = 22	BD n = 11	BSD n = 33
Female sex – no. (%)	12 (54.5%)	6 (54.5%)	18 (53.5)
Age – yr	44.7 ± 15.1 {44.5}	33.8 ± 8.81 {35}	41.1 ± 14.2 {39}
• Female	43.6 ± 18.1 {45.5}	32.5 ± 5.5 {32}	39.9 ± 15.8 {37.5}
• Male	46 ± 11.2 {44}	33.8 ± 12.3 {39}	42.5 ± 12.3 {42}
Family history of aphthous ulcers – no (%)	3 (13.6)	3 (27.3)	6 (18.1)
Other BD signs – no (%)	1 (4.5)	9 (81.8)	10 (30.3)
• Erythema nodosum	1 (4.5)	6 (54.5)	7 (21.2)
• Acneiform lesions	–	8 (72.7)	8 (24.2)
Course of the disease – yr	17.1 ± 15.4 {10}	14.4 ± 11.9 {8}	16.2 ± 14.2 {10}
• Female	18.1 ± 16.3 {10}	13.3 ± 9.9 {11}	16.5 ± 14.3 {10}
• Male	15.9 ± 15.2 {12}	15.6 ± 15.2 {8}	15.8 ± 14.6 {8}
ANA – no. (%)	5 (23.8)	1 (9.1)	6 (18.1)
HLA-B51 – n (tested)	19	11	30
• No. (%)	1 (5.3)	5 (45.5)	6 (18.1)
Other HLA-B – no. (%) ^c	17	9	26
• B05	–	1 (11.1)	1 (3.8)
• B07	2 (11.8)	1 (11.1)	3 (11.5)
• B08	1 (5.9)	1 (11.1)	2 (7.7)
• B13	1 ^a (5.9)	–	1 ^a (3.8)
• B14	3 ^a (17.6)	–	3 ^a (11.5)
• B15	1 (5.9)	–	1 (3.8)
• B18	1 (5.9)	1 (11.1)	2 (7.7)
• B27	2 (11.8)	1 (11.1)	3 (11.5)
• B35	3 ^a (17.6)	1 ^a (11.1)	4 ^b (15.4)
• B38	1 (5.9)	1 (11.1)	2 (7.7)
• B39	1 (5.9)	–	1 (3.8)
• B40	1 (5.9)	1 (11.1)	2 (7.7)
• B44	5 (29.4)	2 (22.2)	7 (26.9)
• B45	1 (5.9)	1 (11.1)	2 (7.7)
• B49	2 (11.8)	–	2 (7.7)
• B50	–	1 (11.1)	1 (3.8)
• B53	1 (5.9)	–	1 (3.8)
• B56	–	1 (11.1)	1 (3.8)
• B57	1 (5.9)	1 (11.1)	2 (7.7)
• B58	1 (5.9)	–	1 (3.8)
Initial treatment – no. (%)	20 (90.9)	11 (100)	31 (93.9)
• Topical glucocorticoid	14 (63.6)	4 (36.4)	18 (56.3)
• Colchicine	5 (22.7)	6 (54.5)	11 (34.4)
• Glucocorticoid	1 (4.5)	1 (9.1)	2 (6.3)
Total previous drugs – no. (%) ^d	20 (90.9)	11 (100)	31 (93.9)
• Topical glucocorticoid	15 (68.2)	6 (64.5)	21 (67.7)
• Colchicine	9 (40.9)	8 (72.7)	17 (54.8)
• Glucocorticoid	4 (18.2)	4 (36.4)	8 (25.8)
• Ciclosporine	2 (9.1)	–	2 (6.5)
• Dapsone	2 (9.1)	2 (18.2)	4 (12.9)
• Sulfasalazine	2 (9.1)	–	2 (6.5)
• Apremilast	1 (4.5)	5 (45.5)	6 (19.4)
• Azatioprine	1 (4.5)	–	1 (3.2)
• Doxycycline	1 (4.5)	1 (9.1)	2 (6.1)
• Hydroxychloroquine	1 (4.5)	–	1 (3.2)
• Adalimumab	–	1 (9.1)	1 (3.2)

ANA: antinuclear antibodies; BD: Behcet's disease; BSD: Behcet spectrum disorders; HLA: human leucocyte antigen; RAS: recurrent aphthous stomatitis.

^a 1 patient was homozygous.^b 2 patients were homozygous.^c The percentage corresponds to the patients tested.^d "Total previous drugs" was defined as the total no. of drugs patients had received throughout the course of the disease.^{*} Plus-minus values are means ± standard deviation (SD). Between {} appears the median.

Table 2
Primary and secondary efficacy end points at week 52.*

Incidence density (100 person-days)	WT (3 months)			RT3 (0–3 months)			RT6 (4–6 months)			RT9 (7–9 months)			RT12 (10–12 months)		
			(n = 33)			(n = 30)			(n = 29)			(n = 26)			
	Rate ratio (RR)	Exposed attributable fraction		Rate ratio (RR)	Exposed attributable fraction		Rate ratio (RR)	Exposed attributable fraction		Rate ratio (RR)	Exposed attributable fraction		Rate ratio (RR)	Exposed attributable fraction	
No. flare-ups ^a	11	0.116 [0.076, 0.175]	-88.4 [-92.4, -82.5]	0.163 [0.114, 0.234]	-83.7 [88.6, 76.6]	0.141 [0.097, 0.204]	-85.9 [-90.3, -79.6]	0.154 [0.107, 0.223]	-84.6 [-89.3, -77.7]						
-p-Value	–	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
No. of oral ulcers ^a	42.4	0.054 [0.03, 0.097]	-94.6 [-97, -90.3]	0.079 [0.048, 0.13]	-92.1 [-95.2, -87]	0.053 [0.029, 0.096]	-94.7 [-97.1, -90.4]	0.081 [0.05, 0.132]	-91.9 [-95, -86.8]						
-p-Value	–	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
No. of genital ulcers ^a	4.8	0.014 [0, 0.506]	-98.6 [-100, -49.4]	0.042 [0.011, 0.16]	-95.8 [-98.9, -84]	0.02 [0.003, 0.121]	-98 [-99.7, -87.9]	0.013 [0.001, 0.115]	-98.7 [88.5, 99.9]						
-p-Value	–	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
WT (3 months)			RT (0–12 months)			Mean			Mean			Mean difference			
Pain-NRS ^b	-p-Value	7.86 [7.13, 8.6]		3.86 [3.1, 4.63]	<0.001		4.0	<0.001							
Duration of ulcers ^b	-p-Value	12.39 [10.9, 13.85]		5.844 [4.26, 7.43]	<0.001		6.546	<0.001							

RT: roflumilast treatment period; RT3 (0–3 months); RT6 (3–6 months); RT9 (6–9 months); RT12 (9–12 months); WT: without treatment period.

^a Analyses were performed using a repeated measures generalised linear mixed model (GLMM) – Poisson mixed-effects with log-link and repeated measures.

^b Analyses were performed using a repeated measures linear mixed model (LMM) with identity-link and repeated measures.

* The analysis has been expressed using the period without treatment as the unexposed group and the periods of roflumilast treatment as the exposed group.

†The exposed attributable fraction was calculated from the rate ratio data and their confidence intervals using the formula: (RR – 1)/RR.

Fig. 1. Incidence density of number of flare-ups (NFU), number of oral ulcers (NOU) and number of genital ulcers (NGU) according to each treatment period. Mean pain-NRS and duration of ulcers (DU) comparing the untreated period with the 52-week regimen of roflumilast. BD: Behcet disease; RAS: recurrent aphthous stomatitis; RT: roflumilast treatment: RT3 (0–3 months); RT6 (3–6 months); RT9 (6–9 months); RT12 (9–12 months).

in NOU and DU. However, during the RT6 and RT9 periods, patients with BD exhibited a significantly higher incidence rate of flare-ups vs those with RAS, whereas no differences were observed during the RT3 and RT12 periods. In the pain-NRS variable, significant differences were found between conditions, with a higher reduction in pain in RAS vs BD (Fig. 1 and Table 2). Detailed results from the scenario analyses are provided in the supplementary data.

Among the 25 patients who completed the 52-week regimen, satisfaction ratings (NRS 0–10) were collected for 23 patients. The mean satisfaction score was 9.41, with a median and mode of 10.

While on roflumilast, 5 patients with BD (45.4%) had episodes of erythema nodosum and 4 (36%), acneiform lesions. Three of the patients with erythema nodosum had severe flare-ups that required discontinua-

tion of roflumilast and switched to a different therapy. Another patient still exhibited lesions with the same frequency, yet reported less symptomatology.

Safety

A total of 21 patients (63%) had AEs. Headache was the most common AE, present in 11 patients. GI disturbances were reported by 9 patients, including abdominal discomfort, nausea-vomiting and diarrhea. Three patients had weight loss, ranging from 3 to 8 kg. All 3 cases described weight loss between 3 and 8 months, with subsequent stabilization reported. Asthenia, back pain and nightmares were described in 1 patient in each case. Most AEs were self-limiting or controllable with

169

170

171

172

173

174

175

176

177

178

179

Table 3

Summarizing adverse effects and course/management of the disease.

Adverse effects (yes)No. (%)	n (%)	Adverse effects*		
		Self-resolution(n)	Management	
			Dose reduction/fractionation ^a (n)	Withdrawal(n)
<i>Headache</i> , no. (%)	11 (33.3)	11	0	0
<i>GI disturbances</i> , no. (%)	9 (27.3)	6	2	1
• GI discomfort	7 (21.2)	5	1	1
• Nausea	2 (6)	1	0	1
• Vomiting	1 (3)	1	0	0
• Diarrhea	3 (9.1)	1	2	0
<i>Weight loss</i> , no. (%)	3 (9.1)	0	0	0
<i>Asthenia</i> , no. (%)	1 (3)	0	0	1
<i>Nightmares</i> , no. (%)	1 (3)	1	0	0
<i>Back pain</i> , no. (%)	1 (3)	0	1	0

* Includes both dose reduction and splitting the total dose into two doses (every 12 h).

* The total number of adverse events is higher than the total number of patients, as several patients experienced more than one different adverse event.

Table 4

Summary of reasons for treatment withdrawal and dose at the time of withdrawal.

Withdrawal (yes), no. (%)	n (%)	Treatment withdrawals		
		125 µg/24 h	Dose at time of treatment withdrawal	
			250 µg/24 h	500 µg/24 h
<i>Adverse events</i> , no. (%)*	2 (6)	–	–	–
• Asthenia	1 (3)	–	1	–
• GI discomfort ^a	1 (3)	–	–	1
<i>Lack of effectiveness</i> , no. (%)	4 (12.1)	–	–	–
• Erythema nodosum and fever	3 (9.1)	–	2	1
• Self-perceived ^b	1 (3)	–	1	–
<i>Genetic desire</i> , no. (%)	1 (3)	–	–	1
<i>Own-account withdrawal</i> , no. (%) ^c	1 (3)	–	1	–

* The 2 patients who withdrew treatment due to adverse effects did so 1 month into therapy.

^a Roflumilast was started at a dose of 500 µg/day, with no prior progressive escalation.^b This patient withdrew medication after a single flare-up of 2 oral ulcers.^c This patient withdrew treatment because he did not want to be on chronic medication. However, he reintroduced it on his own.

180 dose reduction or dose splitting. Two patients withdrew drugs due to
 181 AEs, both before the first month of treatment (Table 3).

182 Two of the 9 patients on 500 µg/day experienced AEs characterized
 183 by GI discomfort, which resolved when the daily dose was split into 2
 184 doses of 250 µg (250 µg bid). Three of the 18 patients on 250 µg/day
 185 experienced persistent AEs at this dose that resolved when the dose was
 186 divided into 2 doses of 125 µg (125 µg bid).

187 Twenty-five of the 33 patients completed the 52-week regimen, and
 188 8 discontinued it (Table 4). Five patients with RAS and 3 with BD dis-
 189 continued treatment. Three of these within the first month: 1 due to
 190 perceived inefficacy after a single flare-up of 2 ulcers and 2 due to AEs.
 191 Three months into therapy, a total of 5 withdrawals were reported. In
 192 3 patients with BD, roflumilast was withdrawn due to severe erythema
 193 nodosum and fever, despite partial control of oral/genital ulcers. These
 194 patients were switched to adalimumab, achieving complete response.
 195 One patient with RAS, who was in complete control, withdrew after 6
 196 months due to genic desire; flare-ups recurred 14 days later. Another
 197 RAS patient withdrew after 7 months, unwilling to continue long-term
 198 treatment. This patient, in partial response during treatment, experi-
 199 enced worsened flare-ups within 8 days. Follow-up was interrupted but
 200 resumed 4 months later. At this point the patient had restarted roflumi-
 201 last on his own, reporting partial control and a quality-of-life score of
 202 8.5/10. Despite resumption, this case was recorded as a withdrawal.

Discussion

204 RAS and BD are two conditions characterized by the appearance
 205 of oral ulcers, which in BD may be associated with genital ulcers or
 206 other cutaneous and/or systemic signs.^{2,3} Recent studies have identi-
 207 fied shared genetic susceptibility loci for both conditions,^{1,4} suggesting
 208 they may belong to a disease spectrum termed BSD.⁴ It has been hypothe-
 209 sized that this overlap could be extrapolated to therapeutic options.⁴
 210 To our knowledge, this is the first study to evaluate the efficacy pro-
 211 file of treatment in BSD. Demonstrating similar therapeutic efficacy for
 212 both conditions would support the spectrum hypothesis and expand
 213 treatment options for patients with BSD. Currently, the only approved
 214 treatment for BD-associated aphthosis is apremilast, a PDE4i,¹¹ and
 215 there is no approved treatment for RAS or for patients with oral or
 216 genital ulcers and other BD manifestations who do not meet diagnostic
 217 criteria.

218 This study showed statistically and clinically significant improve-
 219 ments across all parameters during roflumilast treatment. Roflumilast
 220 appears effective for BSD overall, as well as in the BD and RAS sub-
 221 groups.

222 No significant differences in treatment response were observed
 223 between the two conditions, except for the NFU (at RT6 and RT9) and
 224 ulcer pain, which were higher in the BD group. The differences observed

in NFU were clinically irrelevant, as they were minor vs the untreated period. Additionally, these differences were absent at RT3 and RT12, suggesting they were not due to reduced long term efficacy in the BD group but rather to increased variability from the smaller sample size. Notably, the differences in NFU did not correlate with a higher number of oral or genital ulcers during those periods. Roflumilast significantly improved pain-NRS globally (BSD) and in BD and RAS conditions separately. However, it was more effective in patients with RAS.

Long-term efficacy was maintained throughout the year of treatment, indicating roflumilast could be a valid long-term therapeutic option. The 2 patients who discontinued roflumilast without transitioning to other treatments experienced a higher frequency of ulcers within weeks of withdrawal, which suggests the treatment was effective while active but lacks a prolonged post-treatment effect.

Roflumilast has demonstrated long-term safety in patients with COPD and does not require close monitoring or regular blood tests.¹² However, real-world clinical studies report that up to 72% of patient's experience AEs, with 49–68% discontinuing treatment within the first year.^{12–14} In our study, 22 of 33 patients (66%) experienced AEs, most of which were mild-to-moderate and self-limited within the initial weeks of treatment or after dose increases. For non-self-limiting AEs, dose reduction or splitting the daily dose into two administrations was effective in improving tolerability. Only 3 patients experienced weight loss during the year of treatment, contrasting with findings in psoriasis, where an average weight loss of −4.0% (−3.2 kg) was observed after 6 months.¹⁵ While maintenance doses below 500 µg/day and divided dosing are not included in the roflumilast data sheet,¹⁶ the last approach is documented for other PDE4 inhibitors such as apremilast.¹⁷ In our experience, 5 patients who were unable to tolerate a single daily dose were able to tolerate a divided dosing regimen.

Seven patients (21%) discontinued roflumilast; only 2 cases (6.25%) due to AEs. Both discontinuations occurred during the initial weeks of treatment. One patient started at 250 µg/day and the other at 500 µg/day, a dosage not specified in the technical data sheet.¹⁶ The lower discontinuation rate due to AEs in our cohort may be attributed to the use of lower maintenance doses, as 21 of the 30 patients on long-term treatment (70%) remained on 125 or 250 µg/day. These findings emphasize the importance of clearly explaining the expected AEs profile and its evolution, as recommended in COPD studies.¹² Additionally, initiating treatment at low doses with gradual increases based on effectiveness and tolerance, or dividing the dose into two daily administrations, may improve tolerance and treatment adherence.

Although quality of life was not assessed with scales before starting roflumilast, 23 of the 25 patients who completed a 1-year regimen reported an average improvement of 9.4/10. Additionally, the patient who independently resumed roflumilast reported an improvement of 8.5/10. These subjective improvements align with the observed efficacy, as all studied parameters showed significant reductions vs the untreated period.

Conclusions

- Roflumilast seems to be an effective and safe treatment for the long-term management of BSD characterized by predominantly oral and/or genital ulcerative symptoms.
- Roflumilast does not seem suitable as a first-line therapy for patients with a mucocutaneous phenotype experiencing frequent and/or moderate-to-severe flare-ups of erythema nodosum or significant extracutaneous symptoms.
- The genetic similarities in BSD seem to extend to therapeutic responses, with similar outcomes across different response variables.
- Initiating treatment at low doses with gradual increases based on tolerance and effectiveness, along with clear communication about the expected adverse effect profile, may improve treatment adherence.

- Splitting the roflumilast dose into two daily administrations, similar to the dosing recommendations for apremilast, may enhance tolerance and allow the use of higher doses vs a single daily dose.

Limitations

This study has a limited sample size and is unblinded, which may introduce observer bias. The lack of a placebo control group means that part of the observed effect could be attributed to the placebo effect. The retrospective collection of some baseline data may be subject to recall bias.

Funding

Valencian territorial section of the Spanish Academy of Dermatology and Venereology (AEDV).

Conflict of interest

The authors declare no conflict of interest.

References

1. Dudding T, Haworth S, Lind PA, et al. Genome wide analysis for mouth ulcers identifies associations at immune regulatory loci. *Nat Commun.* 2019;10:1052, <http://dx.doi.org/10.1038/s41467-019-10892-6>.
2. Sánchez-Bernal J, Conejero C, Conejero R. Aftosis oral recidivante. *Actas Dermosifilogr.* 2020;111:471–480, <http://dx.doi.org/10.1016/j.ad.2019.09.004>.
3. Hatemi G, Yazici Y. Behcet's syndrome. *N Engl J Med.* 2024;390:1993–2004, <http://dx.doi.org/10.1056/NEJMra1800724>.
4. Manthiram K, Preite S, Dedeoglu F, et al. Common genetic susceptibility loci link PFAPA syndrome Behcet's disease, and recurrent aphthous stomatitis. *Proc Natl Acad Sci U S A.* 2020;117:14405–14411, <http://dx.doi.org/10.1073/pnas.2002051117>.
5. Lau CB, Smith GP. Recurrent aphthous stomatitis: a comprehensive review and recommendations on therapeutic options. *Dermatol Ther.* 2022;35, <http://dx.doi.org/10.1111/dth.15500>, e15500.
6. Hatemi G, Christensen R, Bang D, et al. 2018 update of the EULAR recommendations for the management of Behcet's syndrome. *Ann Rheum Dis.* 2018;77:808–818, <http://dx.doi.org/10.1136/annrheumdis-2018-213225>.
7. Peñuelas Leal R, Bagan L, Grau Echevarría A, et al. Treatment of recurrent aphthous stomatitis with oral roflumilast, a multicenter observational study. *Int J Dermatol.* 2024;63:e390–e396, <http://dx.doi.org/10.1111/ijd.17478>.
8. Peñuelas Leal R, Labradero Hoyos C, Peñuelas Ruiz JA, et al. Treatment of Behcet disease with oral roflumilast: an observational study [published correction appears in Clin Exp Dermatol 2024;llae490. 10.1093/ced/llae490]. *Clin Exp Dermatol.* 2024;50:62–68, <http://dx.doi.org/10.1093/ced/llae490>.
9. Davatchi F, Assaad-Khalil S, Calamia KT, et al. The International Criteria for Behcet's Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. *J Eur Acad Dermatol Venereol.* 2014;28:338–347, <http://dx.doi.org/10.1111/jdv.12107>.
10. Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. *Biometrics.* 1997;53:983–997.
11. European Medicines Agency (EMA). *Otezla [Internet].* EMA: Amsterdam; 2022. Available from: <https://www.ema.europa.eu/en/medicines/human/EPAR/otezla>. Accessed 17 January 2023.
12. Rogliani P, Calzetta L, Cazzola M, Matera MG. Drug safety evaluation of roflumilast for the treatment of COPD: a meta-analysis. *Expert Opin Drug Saf.* 2016;15:1133–1146, <http://dx.doi.org/10.1080/14740338.2016.1199683>.
13. Wornell E, Hunt EB, Kennedy MP, Henry MT, Plant BJ, Murphy DM. Roflumilast in COPD. *Chest.* 2015;148:e31, <http://dx.doi.org/10.1378/chest.15-0664>.
14. Muñoz-Esquerre M, Diez-Ferrer M, Montón C, et al. Roflumilast added to triple therapy in patients with severe COPD: a real life study. *Pulm Pharmacol Ther.* 2015;30:16–21, <http://dx.doi.org/10.1016/j.pupt.2014.10.002>.
15. Gyldenlove M, Sorensen JA, Fage S, et al. Effects of oral roflumilast therapy on body weight and cardiometabolic parameters in patients with psoriasis: results from a randomized controlled trial (PSORRO). *J Am Acad Dermatol.* 2024;91:64–71, <http://dx.doi.org/10.1016/j.jaad.2024.02.036>.
16. European Medicines Agency (EMA). *Daxas 250 Micrograms Tablets: Summary of Product Characteristics [Internet];* 2021. Available from: https://www.ema.europa.eu/en/documents/product-information/daxas-epar-product-information_en.pdf. Accessed 10 March 2025.
17. European Commission. *Otezla: Summary of Product Characteristics [Internet];* 2021. Available from: https://ec.europa.eu/health/documents/community-registrer/2015/20150115130395/anx_130395_en.pdf. Accessed 10 March 2025.