Stretch marks: systematic review of its therapeutic approach

J. Algarra Sahuquillo A. Martín-Gorgojo

PII: S0001-7310(25)00829-4

DOI: https://doi.org/doi:10.1016/j.ad.2025.104553

Reference: AD 104553

To appear in: Actas dermosifiliograficas

Received Date: 2 February 2025

Accepted Date: 21 April 2025

Please cite this article as: Algarra Sahuquillo J, Martín-Gorgojo A, Stretch marks: systematic review of its therapeutic approach, *Actas dermosifiliograficas* (2025), doi: https://doi.org/10.1016/j.ad.2025.104553

This is a PDF of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability. This version will undergo additional copyediting, typesetting and review before it is published in its final form. As such, this version is no longer the Accepted Manuscript, but it is not yet the definitive Version of Record; we are providing this early version to give early visibility of the article. Please note that Elsevier's sharing policy for the Published Journal Article applies to this version, see: https://www.elsevier.com/about/policies-and-standards/sharing#4-published-journal-article. Please also note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

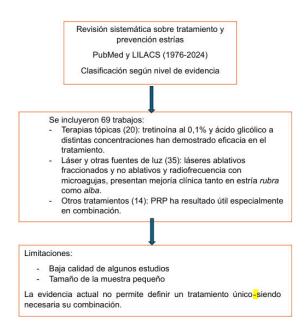
© 2025 AEDV. Published by Elsevier España, S.L.U.

Sección: dermatología práctica

Stretch marks: systematic review of its therapeutic approach

Authors:

- J. Algarra Sahuquillo^a, and A. Martín-Gorgojo^b
- ^{a.} Servicio de Dermatología. Hospital Universitario de la Ribera. Valencia, Spain.
- Servicio de ITS/Dermatología, Sección de Especialidades Médicas. Ayuntamiento de Madrid, Madrid,
 Spain


E-mail address: alejandromartingorgojo@aedv.es

Corresponding author:

Judit Algarra Sahuquillo

E-mail address: judit.algarra.sahuquillo@gmail.com

Graphical abstract

Abstract

Introduction. Stretch marks are common lesions that affect areas under stress, especially common in pregnant women and adolescents. Despite its prevalence, its treatment and prevention are a challenge in Dermatology.

Material and Methods. Systematic review of the literature published in PubMed and LILACS (1976-2024). The articles were classified according to their scientific evidence (level 1, randomized controlled studies; level 5, clinical cases).

Results. A total of 69 articles were evaluated: 20 on topical treatments, 35 on lasers and energy devices, and 14 on other therapies. Tretinoin at 0.1% and glycolic acid at different concentrations demonstrated clinical improvement, especially in recent stretch marks. Ablative and non-ablative lasers and

radiofrequency with microneedles presented good results. Other treatments, such as PRP, are useful in combination.

Conclusions. Current evidence does not allow defining a single treatment; some works are of low quality and with small samples. The combination of treatments helps to improve results.

Keywords:

Stretch Marks; Topics; Laser; PRP; Tretinoin; Radiofrequency

Introduction

Stretch marks are common cutaneous lesions associated with mechanical, hormonal, and genetic factors¹,². They present as red stretch marks (striae rubra) in early stages and white stretch marks (striae alba) in later stages. These lesions affect areas exposed to tension, such as the abdomen, thighs, and breasts, and are more prevalent in pregnant women, adolescents, and individuals with higher phototypes³.

From a histologic standpoint, striae rubra demonstrate inflammation, collagen fiber thickening, and reduced elastic fibers^{4,5}, whereas striae alba show dermal atrophy and rupture with decreased vascularization.

Despite their high prevalence, their treatment and prevention remain a therapeutic challenge in Dermatology.

This study is based on the hypothesis that at least one scientifically supported, effective therapeutic option may currently be identified for the treatment of striae.

The endpoints of this study are:

- 1. To evaluate and synthesize the available evidence on the various therapeutic modalities used in the management of cutaneous striae.
- 2. To determine whether one or several options could be positioned as first-line therapy.
- 3. To provide a practical clinical guide and identify potential areas for future research.

Materials and Methods

We conducted a systematic review of the literature published in PubMed from January 1976 through February 2024 and LILACS from January 1986 through February 2024 was performed on the treatment and prevention of striae.

Search terms were selected according to MeSH and DeCS vocabularies and included: "striae," "striae distensae," "stretch marks," "striae gravidarum," "striae rubrae," "striae albae," and "treatment."

Studies included clinical trials, cohort studies, controlled studies, and isolated case reports. Exclusion criteria were articles not published in English or Spanish, animal or in vitro studies, letters to the editor, narrative or systematic reviews, meta-analyses, and duplicate publications.

Each included study was assigned a level of evidence according to its scientific quality: Level 1 for randomized controlled trials, level 2 for randomized comparative studies, level 3 for nonrandomized comparative studies, level 4 for case series, and level 5 for isolated case reports.

Results

Included and excluded studies

A total of 364 records were identified in PubMed and 36 in LILACS. After screening titles and abstracts, a total of 325 articles were excluded for not meeting inclusion criteria. The full text of 69 articles was reviewed and categorized by therapeutic approach: (A) topical treatments (20 articles), (B) lasers and light-based therapy (35 articles), and

(C) other therapies (14 articles).

A) Results of Topical Treatments

1) Tretinoin (Table 1)

A vitamin A derivative, tretinoin promotes neoangiogenesis, collagen formation, and cellular differentiation. Most studies used a concentration of 0.1%. All reported significant clinical improvement except at 0.025%. A 12-week regimen was generally required to achieve results. Adverse effects were mild and rare, including local irritation and desquamation.

Of note, the study by Gamil⁶ compared daily 0.05% tretinoin for 3 months with monthly platelet-rich plasma (PRP) injections. Greater improvement was observed in red vs white striae, with superior results and higher patient satisfaction in the PRP group.

2) Glycolic acid (Table 2)

An alpha-hydroxy acid involved in cellular repair, glycolic acid accelerates collagen regeneration through fibroblast stimulation and cytokine release by keratinocytes.

Two major studies are noteworthy. Mazzarello et al.⁷ compared glycolic acid 70% monthly for 6 months vs placebo in 40 patients with red and white striae. Clinical improvement was reported in texture and erythema, along with increased melanin detected by spectrophotometry. Ash et al.⁸ compared glycolic acid 20% + tretinoin 0.05% vs a combination of glycolic acid 20%, L-ascorbic acid 10%, zinc sulfate 2%, and tyrosine 0.5% in 10 women with white striae, without significant differences across groups.

3) Cocoa Butter and Olive Oil:

Cocoa butter has emollient properties, as does olive oil, which is rich in vitamin E.

Studies^{9–13} evaluated their usefulness in preventing striae in pregnant women vs placebo or other emollient creams. No significant differences were observed in any study.

4) Silicone Gel and Other Topical Agents:

Summarized in Table 3.

B) Results of Laser-Based Treatments

1) CO₂ Laser (Table 4)

Used in fractional mode, CO₂ lasers—due to their high affinity for water—create microscopic ablative and coagulative columns (*microthermal zones, MTZ*), with preserved tissue in between, promoting new collagen and elastin formation.

Most studies reported that fractional CO₂ laser improved dermal collagen regeneration, increased skin thickness, and enhanced clinical appearance. Adverse effects were mild and expected: post-inflammatory hyperpigmentation, erythema, and crusting.

Comparisons between fractional CO₂ and microneedling radiofrequency (MRF)—an energy-based device causing deep dermal thermal injury and growth factor release^{14–16}—or microneedling alone¹⁷, ¹⁸—showed variable results. MRF demonstrated clinically satisfactory outcomes, and in some studies, was superior to CO₂¹⁶.

One study¹⁹ compared fractional CO₂ laser with carboxytherapy (subcutaneous CO₂ infusion inducing stretching and low-grade inflammation) in 40 women with abdominal striae. Both treatments produced improvement, with no significant differences in efficacy or adverse events.

2) Nonablative Fractional Lasers (NAFL) (Table 5):

Due to lower water affinity, NAFL do not ablate epidermal layers. Tissue remodeling occurs by deep dermal heating, stimulating collagen and elastin regeneration without crust formation. NAFL are classified by wavelength (1450, 1540, 1550, 1064, 2940 nm), which determines penetration depth.

Five studies evaluated 1550- and 1565-nm Er:Glass lasers^{20–24}, 3 evaluated 1540-nm and 1450-nm diode lasers^{25–27}, 2 evaluated 2940-nm Er:YAG²⁸,²⁹, and 1 evaluated 1064-nm Nd:YAG³⁰. Although results varied, most reported partial improvement. One study²⁷ using diode lasers at different energies found no benefit vs control. Adverse effects were mild, with post-inflammatory hyperpigmentation—particularly in darker skin types—being the most common.

3) Vascular Lasers (Table 6)

Several studies evaluated pulsed dye laser (PDL), long-pulse 1064-nm Nd:YAG, or intense pulsed light (IPL), targeting hemoglobin due to their wavelengths.

Two studies assessed PDL. The first³¹ showed modest improvement in red striae and no change in white striae. The second³² demonstrated improvement in white striae (red striae not included), with better outcomes using larger spot sizes and higher energies (10 mm, 3 J).

Shokeir et al.³³ compared the outcomes of PDL vs IPL (565 nm). Although PDL showed slightly greater improvement, both light sources demonstrated clinically significant improvement in striae width, with greater effects in more recent (red) and smaller striae. Al Dhalimi et al.³⁴ compared 2 different IPL wavelengths (650 nm and 590 nm) for the management of striae rubra. Lower fluences were used at 590 nm (up to 14.5 J with 590 nm and up to 15.5 J with 650 nm) to avoid adverse effects. They achieved greater improvement with 590 nm, although with a higher rate of adverse events (erythema, pain, and post-inflammatory hyperpigmentation), since melanin acts as a competing chromophore for light devices with affinity for hemoglobin. Finally, Alexiades-Armenakas et al.³⁵ studied the 308-nm excimer lamp for the treatment of striae alba, demonstrating improvement vs the untreated side using colorimetric analysis. These favorable results progressively approached those of the control group during 6-month follow-up, suggesting that maintenance treatment would be necessary.

C) Other Treatments (Table 7):

1) Platelet-rich plasma (PRP), which contains a high concentration of growth factors and cytokines, has also been used for this indication, generally in combination with other techniques.

Ibrahim et al.³⁶ used local PRP injections, microdermabrasion with aluminum oxide crystals (a resurfacing technique that theoretically improves the dermal matrix and promotes re-epithelialization), and the combination of both. They observed better results with both techniques than with 1 technique only.

Hodeib et al.³⁷ and Ahmed et al.³⁸ compared PRP with carboxytherapy, and PRP with carboxytherapy plus tripolar RF, respectively. In both studies, all groups improved, without significant differences across treatments. In Ahmed et al., PRP was more effective in striae rubra.

- 2) Subcision, a minimally invasive technique in which a cannula or blunt needle is introduced beneath the skin to break fibrous tracts that create surface depressions, was used alone or vs 0.1% tretinoin, or in combination with it, in the study by Luis-Montoya et al.³⁹. No significant differences in efficacy were found across the 3 groups. However, subcision produced more adverse effects, including cutaneous necrosis in 3 patients.
- 3) One study employed combined UVB (296–315 nm) and UVA1 (360–370 nm)⁴⁰ for up to 10 sessions to repigment striae alba. More than half of patients achieved repigmentation, with hyperpigmentation as the most frequent adverse effect.
- 4) Finally, cold atmospheric plasma therapy involves applying an ionized gas directly to the skin. This plasma produces a combination of reactive oxygen and nitrogen species, along with electrons, ions, and free radicals, promoting collagen and elastin synthesis, improving blood circulation, and accelerating wound healing. Only 1 study with 23 participants applied it to striae⁴¹, showing improvement in all evaluated scales from the first session, with mild adverse effects.

Discussion

In developing this work, it became evident that the scientific literature on the treatment of stretch marks is limited, as are the sample sizes and the strength of the conclusions that can be drawn from the highly variable results reported. The multitude of available options, with diverse mechanisms of action (collagen stimulation, increased skin elasticity, enhanced cellular proliferation, anti-inflammatory effects, emollient capacity, etc.), makes it difficult to recommend a single treatment.

Among topical therapies, tretinoin 0.1% and glycolic acid—both as 70% peeling and 20% daily application—stand out, as both have demonstrated improvement in the clinical appearance of striae. In studies comparing striae rubra and alba, more favorable responses were consistently seen in striae rubra, likely due to their more recent onset. Early interventions may minimize the structural epidermal and dermal changes that lead to persistent lesions. Nevertheless, in some studies, it is unclear how much of the benefit is due to massage during application rather than the topical agent *per se*.

Ablative and non-ablative lasers and MRF have demonstrated usefulness in treating all types of striae. Lasers or light sources targeting hemoglobin make more sense for striae rubra; however, studies evaluating both types of striae also demonstrated improvement in striae alba. Histologically, these devices increase dermal collagen and elastic fibers, helping regenerate the cutaneous surface.

Regarding PRP and similar techniques that stimulate cellular regeneration and collagen synthesis through growth factor release, their role continues to expand, particularly in combination therapies.

This review included several studies on combination treatments, including CO₂ + MRF¹⁵, ⁴⁷; CO₂ + PRP⁵⁷; RF + PDL⁶⁶; infrared light + RF⁷⁰; RF + tretinoin⁷²; subcision + tretinoin³⁹; microneedling RF + 5-FU⁷³; and microdermabrasion + PRP³⁶. In most cases, combinations yielded better results than monotherapies.

Other reported combinations—such as fractional lasers with vascular lasers (eg, CO_2 + PDL^{42} or IPL + erbium⁴³)—have also shown good outcomes, though they were not included here due to study selection criteria.

Based on level of evidence, the 3 treatments that may be considered most clinically relevant are fractional CO₂ laser, 0.1% tretinoin (especially for recent striae), and microneedling RF.

Overall, when treating a patient with stretch mark—and considering the findings of this review—the most reasonable approach is combination therapy (Figure 1). This must be done considering that, in striae rubra, treatments aimed at reducing pigmentation and erythema should be prioritized, in contrast with the recommendation of therapies with repigmenting potential that may be beneficial in striae alba. In addition, the potential adverse effects associated with certain treatments should be taken into consideration (notably the risk of post-inflammatory hyperpigmentation, which is more common in individuals with higher phototypes).

This study has the strength of its methodology and its broadened inclusion criteria, designed to synthesize clinically relevant information as comprehensively as possible. As relative limitations, we would include the fact that only the LILACS and PubMed databases were searched, as well as the suboptimal quality of most eligible studies, which generally included a small number of patients (with a mean of 39.84 subjects).

Conclusions

- 1. Multiple treatments exist for the management and prevention of stretch marks, with variable results. Tretinoin 0.1% has demonstrated benefit in most studies. Cocoa-butter and olive-oil creams have not proven effective in preventing striae. Fractional ablative and non-ablative lasers and MRF have shown benefit via dermal collagen remodeling. Vascular lasers have greater evidence in striae rubra.
- 2. Many analyzed studies are low quality, with small sample sizes, and comparative trials are scarce; therefore, a single first-line therapy cannot be recommended.
- 3. Current literature does not offer clear or unified treatment guidance; however, combination therapy appears reasonable to maximize effectiveness and minimize adverse effects.

References

- 1. Garcia Hidalgo L. Dermatological complications of obesity. *Am J Clin Dermatol.* 2002;3:497–506.
- 2. Atwal GSS, Manku LK, Griffiths CEM, Polson DW. Striae gravidarum in primiparae. *Br J Dermatol.* 2006;155:965–969.
- 3. Elbuluk N, Saizan AL, Hurtado ACM, et al. Differences in clinical features and risk factors for striae distensae in Black and White women. *Arch Dermatol Res.* 2025;317:592.
- 4. Watson RE, Parry EJ, Humphries JD et al. Fibrillin microfibrils are reduced in skin exhibiting striae distensae. *Br J Dermatol*.1998;138:931–937.
- 5. Ud-Din S, McGeorge D, Bayat A. Topical management of striae distensae (stretch marks): prevention and therapy of striae rubrae and albae. *J Eur Acad Dermatol Venereol.* 2016;30(2):211-22.
- Gamil HD, Ibrahim SA, Ebrahim HM, Albalat W. Platelet-Rich Plasma Versus Tretinoin in Treatment of Striae Distensae: A Comparative Study. *Dermatol Surg.* 2018;44(5):697-704.
- 7. Mazzarello V, Farace F, Ena P, Fenu G, Mulas P, Piu L. A superficial texture analysis of 70% glycolic acid topical therapy and striae distensae. *Plast Reconstr Surg.* 2012;129(3):589e-590e.
- Ash K, Lord J, Zukowski M, McDaniel DH. Comparison of topical therapy for striae alba (20% glycolic acid/0.05% tretinoin versus 20% glycolic acid/10% L-ascorbic acid). *Dermatol Surg.* 1998;24(8):849-56.
- 9. Osman H, Usta IM, Rubeiz N, Abu-Rustum R, Charara I, Nassar AH. Cocoa butter lotion for prevention of striae gravidarum: a double-blind, randomised and placebo-controlled trial. *BJOG*. 2008;115(9):1138-42.
- 10. Buchanan K, Fletcher HM, Reid M. Prevention of striae gravidarum with cocoa butter cream. *Int J Gynaecol Obstet*. 2010;108(1):65-8.
- 11. Soltanipour F, Delaram M, Taavoni S, Haghani H. The effect of olive oil and the Saj® cream in prevention of striae gravidarum: A randomized controlled clinical trial. *Complement Ther Med.* 2014;22(2):220-5.

- 12. Soltanipour F, Delaram M, Taavoni S, Haghani H. The effect of olive oil on prevention of striae gravidarum: a randomized controlled clinical trial. *Complement Ther Med.* 2012;20(5):263-6.
- 13. Taavoni S, Soltanipour F, Haghani H, Ansarian H, Kheirkhah M. Effects of olive oil on striae gravidarum in the second trimester of pregnancy. *Complement Ther Clin Pract.* 2011;17(3):167-9.
- 14. Sobhi RM, Mohamed IS, El Sharkawy DA, Abd El Wahab MAEF.

 Comparative study between the efficacy of fractional micro-needle radiofrequency and fractional CO₂ laser in the treatment of striae distensae. *Lasers Med Sci.* 2019;34(7):1295-1304.
- 15. Seong GH, Jin EM, Ryu TU, Kim MH, Park BC, Hong SP. Fractional Radiofrequency Microneedling Combined With Fractional Carbon Dioxide Laser Treatment for Striae Distensae. *Lasers Surg Med.* 2021;53(2):219-226.
- Khater MH, Khattab FM, Abdelhaleem MR. Treatment of striae distensae with needling therapy versus CO2 fractional laser. *J Cosmet Laser Ther*. 2016;18(2):75-9.
- 17. Soliman M, Soliman MM, El-Tawdy A, Shorbagy AS. Efficacy of fractional carbon dioxide laser versus microneedling in the treatment of striae distensae. *J Cosmet Laser Ther*. 2019;21(5):270-277.
- 18. Saki N, Rahimi F, Pezeshkian FS, Parvar SY. Comparison of the efficacy of microneedling versus CO₂ fractional laser to treat striae alba: A randomized clinical trial. *Dermatol Ther.* 2022;35(1):e15212.
- 19. Elmorsy EH, Yehia F Elgarem YF, Eman S Sallam ES, Alsayeda A A Taha AAA. Fractional Carbon Dioxide Laser Versus Carboxytherapy in Treatment of Striae Distensae. *Lasers Surg Med.* 2021;53(9):1173-1179.
- 20. Kim BJ, Lee DH, Kim MN, Song KY, Cho I, Lee CK, et al. Fractional photothermolysis for the treatment of striae distensae in Asian skin. *Am J Clin Dermatol.* 2008;9(1):33-7.
- 21. Stotland M, Chapas AM, Brightman L, Sukal S, Hale E, Karen J, et al. The safety and efficacy of fractional photothermolysis for the correction of striae distensae. *J Drugs Dermatol.* 2008;7(9):857-61.
- 22. Park KK, Erin Roberts E, Rebecca C Tung RC. One Thousand Five Hundred Fifty Nanometer Erbium-Doped Nonablative Fractional Laser for the

- Treatment of Striae Distensae in Patients of Skin of Color (Fitzpatrick Skin Types IV-VI). *Dermatol Surg.* 2018;44(8):1151-1153.
- 23. Katz TM, Goldberg LH, Friedman PM. Nonablative fractional photothermolysis for the treatment of striae rubra. Dermatol Surg.2009;35(9):1430-3.
- 24. Clementoni MT, Lavagno R. A novel 1565 nm non-ablative fractional device for stretch marks: A preliminary report. *J Cosmet Laser Ther*. 2015;17(3):148-55.
- 25. de Angelis F, Kolesnikova L, Renato F, Liguori G. Fractional nonablative 1540-nm laser treatment of striae distensae in Fitzpatrick skin types II to IV: clinical and histological results. *Aesthet Surg J.* 2011;31(4):411-9.
- 26. Oliveira Alves R, Camargo Boin MF, Crocco EI. Striae after topical corticosteroid: Treatment with nonablative fractional laser 1540nm. *J Cosmet Laser Ther*. 2015;17(3):143-7.
- 27. Tay YW, Kwok C, Tan E. Non-ablative 1,450-nm diode laser treatment of striae distensae. *Lasers Surg Med.* 2006;38(3):196-9.
- 28. Meningaud JP, SidAhmed-Mezi M, Billon R, Rem K, La Padula S, Hersant B. Clinical benefit of using a multifractional Er:YAG laser combined with a spatially modulated ablative (SMA) module for the treatment of striae distensae: A prospective pilot study in 20 patients. *Lasers Surg Med.* 2019;51(3):230-238.
- 29. Wanitphakdeedecha R, Meeprathom W, Manuskiatti W. A pilot study of treatment of striae distensae with variable square pulse Erbium: YAG laser resurfacing. *J Cosmet Dermatol.* 2017;16(4):466-470.
- 30. Kaewkes A, Manuskiatti W, Cembrano KA, Wanitphakdeedecha R.

 Treatment of abdominal striae distensae in Fitzpatrick skin types IV to V using a 1064-nm picosecond laser with a fractionated microlens array.

 Lasers Surg Med. 2022;54(1):129-137.
- 31. Jiménez GP, Flores F, Berman B, Gunja-Smith Z. Treatment of striae rubra and striae alba with the 585-nm pulsed-dye laser. *Dermatol Surg*. 2003;29(4):362-5.
- 32. McDaniel DH, Ash K, Zukowski M. Treatment of stretch marks with the 585-nm flashlamp-pumped pulsed dye laser. *Dermatol Surg.* 1996;22(4):332-7.

- 33. Shokeir H, El Bedewi A, Sayed S, El Khalafawy G. Efficacy of pulsed dye laser versus intense pulsed light in the treatment of striae distensae. *Dermatol Surg.* 2014;40(6):632-40.
- 34. Al-Dhalimi MA, Abo Nasyria AA. A comparative study of the effectiveness of intense pulsed light wavelengths (650 nm vs 590 nm) in the treatment of striae distensae. *J Cosmet Laser Ther*. 2013;15(3):120-5.
- 35. Alexiades-Armenakas MR, Bernstein LJ, Friedman PM, Geronemus RG. The safety and efficacy of the 308-nm excimer laser for pigment correction of hypopigmented scars and striae alba. *Arch Dermatol.* 2004;140(8):955-60.
- 36. Ibrahim ZAE, El-Tatawy RA, El-Samongy MA, Ali DAM. Comparison between the efficacy and safety of platelet-rich plasma vs. microdermabrasion in the treatment of striae distensae: clinical and histopathological study. *J Cosmet Dermatol*. 2015;14(4):336-46.
- 37. Hodeib AA, Hassan GF, Ragab MN, Hasby EA. Clinical and immunohistochemical comparative study of the efficacy of carboxytherapy vs platelet-rich plasma in treatment of stretch marks. *J Cosmet Dermatol.* 2018 Dec;17(6):1008-1015.
- 38. Ahmed NA, Mostafa OM. Comparative study between: Carboxytherapy, platelet-rich plasma, and tripolar radiofrequency, their efficacy and tolerability in striae distensae. *J Cosmet Dermatol.* 2019;18(3):788-797.
- 39. Luis-Montoya P, Pichardo-Velázquez P, Hojyo-Tomoka MT, Domínguez-Cherit J. Evaluation of subcision as a treatment for cutaneous striae. *J Drugs Dermatol.* 2005;4(3):346-50.
- 40. Sadick NS, Magro C, Hoenig A. Prospective clinical and histological study to evaluate the efficacy and safety of a targeted high-intensity narrow band UVB/UVA1 therapy for striae alba. *J Cosmet Laser Ther.* 2007;9(2):79-83.
- 41. Suwanchinda A, Nararatwanchai T. The efficacy and safety of the innovative cold atmospheric-pressure plasma technology in the treatment of striae distensae: A randomized controlled trial. *J Cosmet Dermatol*. 2022;21(12):6805-6814.
- 42. Naeini FF, Nikyar Z, Mokhtari F, Bahrami A. Comparison of the fractional CO2 laser and the combined use of a pulsed dye laser with fractional CO2 laser in striae alba treatment. *Adv Biomed Res.* 2014;3:184.

43. Wang Y, Song Y. Efficacy of combined treatment with intense pulsed light and erbium fractional laser in striae gravidarum. *Clin Cosmet Investig Dermatol.* 2022;15:2817–2824.

Figure 1. Proposed Treatment Algorithm.

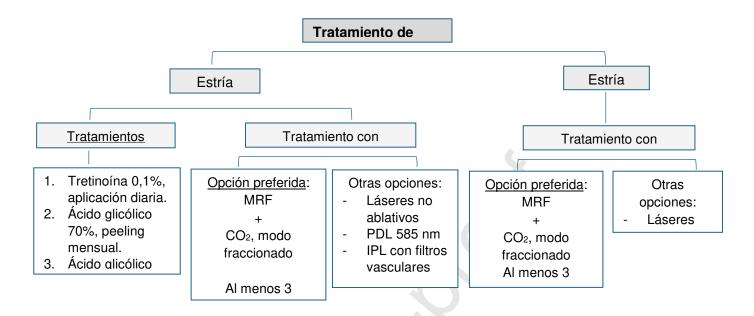


Table 1. Summary of Studies on the Treatment of Striae with Tretinoin

Authors	Treatment	Dose	Type of Striae	Location	N	Sex	Outcome	Adverse Effects	Study Type	Level of Evidence
Gamil HD et al. ⁶	Platelet-rich plasma vs Tretinoin 0.05%	PRP every 3 months and daily tretinoin	Rubra and alba	N/S	30	F/M	Significant improvement in both groups. Tretinoin better for striae rubra.	Mild pain and bruising with PRP.	Randomized comparative	2
Asawaworarit P et al. ⁴²	Herbal extract cream vs Tretinoin 0.1%	Daily for 16 weeks	Alba	Hips	48	F/M	Significant improvement in both groups; no differences.	Irritant contact dermatitis in 4.55% (herbal cream) vs 72.3% (tretinoin).	Randomized comparative	2
Kang S et al. ⁴³	Tretinoin 0.1% vs Placebo	Daily for 6 months	Rubra	Multiple	22	F/M	Significant improvement in tretinoin group. No histologic differences.	N/R	Randomized comparative	2
Rangel O et	Tretinoin 0.1% vs Placebo	Daily for 3 months	N/S	Abdomen	20	Pregnant F	Clinical improvement in tretinoin group	Erythema and scaling	Non- randomized comparative	3
Pribanich S et al. ⁴⁵	Tretinoin 0.025% vs Placebo	Daily for 7 months	N/S	Abdomen	11	Pregnant F	No differences	N/R	Randomized comparative	2
Elson ML et al.46	Tretinoin 0.1%	Daily for 12 weeks	N/S	Multiple	20	F/M	Clinical improvement	N/R	Case series	4
Listiawan MY et al. ⁴⁷	Tretinoin 0.1% vs Fractional RF microneedling + Fractional CO ₂ laser	Daily tretinoin for 12 weeks; 3 laser sessions 4 weeks apart	Alba	Abdomen	222	F			Non- randomized comparative	
Hexel D et	Tretinoin 0.05% vs Dermabrasion	Weekly dermabrasion and daily tretinoin for 16 weeks	Rubra	Multiple	32	F	Significant improvement; no differences between groups	Pruritus, erythema, burning; no differences between groups	Randomized comparative	2

N, number of participants; F, female; M, male; N/R, not reported; N/S, not specified; PRP, platelet-rich plasma; RF, radiofrequency. Note: References outside the range [1–41] are included as supplementary data.

Table 2. Summary of Studies on the Treatment of Striae with Glycolic Acid, Cocoa Butter, and Olive Oil

Authors	Treatment	Dose	Type of Striae	Location	N	Sex	Outcome	Adverse Effects	Study Type	Level of Evidence
Mazzarello V et al. ⁷	70% glycolic acid peel vs placebo	Once monthly for 6 months	Rubra and alba	Hips	40	F/M	Significant improvement in texture and erythema. No differences in control group.	N/R	Randomized controlled	2
Ash K et al.8	20% glycolic acid + 0.05% tretinoin vs 20% glycolic acid + 10% L-ascorbic acid, 2% zinc sulfate, and 0.5% tyrosine	Daily for 12 weeks	Alba	Multiple	10	F	Improvement in both treatment arms, no differences between groups. Greater elastin increase in tretinoin group.	Irritant dermatitis in 1 patient per group	Randomized controlled	2
Ud Din S et al. ⁴⁹	Silicone gel vs placebo	Daily for 6 weeks	N/S	Abdomen	20	F	Significant improvement with silicone gel; vascularization decreased significantly with placebo	N/R	Randomized controlled	1
Bodgan C et al. ⁵⁰	Punica granatum and Croton lechleri cream	Daily for 6 weeks	Alba	Hips	20	F	Improvement in both groups	N/R	Non- randomized comparative	3
García- Hernández JA et al. ⁵¹	Hydroxyprolisilane C cream, rosehip oil, Centella asiatica triterpenes, and vitamin E vs placebo	At least twice daily until 1 month postpartum	N/S	Multiple	183	Pregnant women	Lower incidence and severity in treatment group	Erythema, xerosis, pruritus	Randomized controlled	1
Hajhashemi M et al. ⁵²	Aloe vera vs almond-oil cream vs emollient cream vs placebo	Twice daily from week 16 through delivery	N/S	Multiple	160	Pregnant women	Improvement in treatment group	N/R	Randomized controlled	1
Draelos ZD et al. ⁵³	Cream with onion extract, Centella asiatica, and hyaluronic acid vs placebo	Twice daily for 12 weeks	Rubra	Hips	_	F	Significant improvement in treatment group	N/R	Non- randomized controlled	3

N, number of participants; F, female; M, male; N/R, not reported; N/S, not specified. Note: References outside the range [1–41] are included as supplementary data.

Table 3. Summary of Studies on the Treatment of Striae with Silicone Gels and Other Topical Therapies

Author s	Treatment	Dose	Type of Stria e	Location	N	Sex	Outcome	Adverse Effects	Study Type	Level of Evidenc e
Sobhi MR et al. ¹⁴	Fractional CO ₂ vs MRF	5 sessions, 4 weeks apart, 2 passes/sessio n	N/S	Multiple	1 7	F	No significant differences	Post-inflammatory hyperpigmentation with CO ₂	Non- randomized comparativ e	3
Seong GH et al. ¹⁵	Fractional CO ₂ vs CO ₂ + MRF vs MRF	3 sessions, 4 weeks apart, 1 pass/session	N/S	Abdome n	1	F (phototype s III–IV)	Significant improvement in the combined group	Hyperpigmentatio n and pruritus in combined and CO ₂ groups	Randomize d comparativ e	2
Khater MH et al. ¹⁶	Fractional CO ₂ vs MRF	3 sessions, 4 weeks apart	Rubra and alba	Abdome n and thighs	2 0	F (phototype s III–IV)	Clinical improvement; increased collagen, elastic fibers, and epidermal thickness in 90% with microneedling vs 50% with CO ₂	Post-inflammatory hyperpigmentation in CO ₂ group	Non- randomized comparativ e	3
Soliman M et al. ¹⁷	Fractional CO ₂ vs microneedling (dermaroller)	3 sessions, 4 weeks apart	N/S	Multiple	3	F/M	Greater satisfaction and effectiveness with CO ₂	Post-inflammatory hyperpigmentation in CO ₂ group	Non- randomized comparativ e	3
Saki N et al. ¹⁸	Fractional CO ₂ vs microneedling	4 sessions, 4 weeks apart	N/S	N/S	4 0	F/M	Reduction in striae width with no group differences	Not reported	Randomize d comparativ e	2
Elmorsy EH et al. ¹⁹	Fractional CO ₂ vs carboxytherap y	CO ₂ : 6 sessions, 4 weeks apart; Carboxy: 6 sessions, 2 weeks apart	Rubra and alba	Abdome n	4 0	F	Improvement with both therapies; no significant differences	CO ₂ : erythema, crusts, pain, PIH; Carboxy: erythema, bruising, tingling	Randomize d comparativ e	2
Crocco EI et al. ⁵⁴		4 sessions with increasing intensity (80– 110 mJ/MTZ), 4 weeks apart	Alba	Abdome n	1 3	F	Significant increase in collagen fibers and epidermal thickness; non- significant increase in elastic fibers	Erythema, edema, crusting	Controlled comparativ e	1
Cho SB et al. ⁵⁵	Fractional CO ₂	2 sessions, 4 weeks apart	Alba	Thighs	1	F	Clinical improvement	None	Case report	5
Nouri K et al. ⁵⁶	CO ₂ vs PDL 585 nm vs control	Single session; assessment at 4 and 20 weeks	N/S	Abdome n	4	F (phototype s IV & VI)	PDL: No improvement in phototype IV; worsening hyperpigmentatio n in VI. CO ₂ : persistent erythema in IV, hyperpigmentatio n in VI	Hyperpigmentatio n	Controlled comparativ e	1

Author s	Treatment	Dose	Type of Stria e	Location	N	Sex	Outcome	Adverse Effects	Study Type	Level of Evidenc e
Preclaro IA et al. ⁵⁷	CO ₂ + PRP vs CO ₂ + placebo	4 sessions, 4 weeks apart; combined group: CO ₂ followed by PRP	N/S	Abdome n	1 6	F	Clinical and subjective improvement in CO ₂ + PRP; no significant differences	Not reported	Controlled comparativ e	1
Shin JU et al. ⁵⁸	CO ₂ vs CO ₂ + (succinylated atelocollagen or placebo) vs collagen or placebo	3 sessions, 4 weeks apart; follow-up 1 month after completion	Alba	N/S	1 4	F	Significant differences between collagen and placebo in irradiated groups; and between collagen and placebo without CO ₂ ; epidermal thickening in all groups	Pruritus, erythema; one case of psoriasis	Controlled comparativ e	1

N, number of participants; F, female; M, male; N/R, not reported; N/S, not specified. Note: References outside the range [1–41] are included as supplementary data.

 $\textbf{Table 4.} \ \text{Summary of Studies on the Treatment of Striae Using CO$_2$ Lasers}$

Authors	Treatment	Dogo	Type of Stria e	Location	N	Sex	Outcome	Adverse Effects	Study Type	Level of Evidenc e
Kim BJ et al. ²⁰	NAFL 1550 nm vs control	1 session; evaluatio n at 4 and 8 weeks	Alba	Thighs	6	F	Improvement in erythema, pigmentation, and partial elasticity; increased epidermal thickness, collagen, and elastic fibers histologically	Pain, hyperpigmentatio n	Non- randomized comparativ e	3
Stotland et al. ²¹	NAFL 1550 nm	6 sessions, 2–3 weeks apart	Alba	Abdomen , thighs, buttocks	2 0	F	26–50% improvement in 63%; < 25% improvement in dyschromia in 50%; 26–50% texture improvement in 50%	Not reported	Case series	4
de Angelis F et al. ²⁵	NAFL 1540 nm	apart; 2–	Rubr a and alba	Multiple	5	F/M	improvement at 6 months; increased dermal collagen/elasti n; no recurrence at 18–24 months	Erythema, edema, PIH	Case series	4

Authors	Treatment	Dose	Type of Stria e	Location	N	Sex	Outcome	Adverse Effects	Study Type	Level of Evidenc e
Park KK et al. ²²	NAFL 1550 nm vs control	3 sessions, 4 weeks apart	N/S	Abdomen	1 7	F (phototype s IV–VI)	Significant clinical improvement of striae and DLQI vs control	Pruritus, scaling, erythema; no PIH	Controlled comparativ e	1
Katz TM et al. ²³	NAFL 1550 nm		Rubr a	Thighs and breasts	2	F	Clinical improvement	Erythema, edema	Case series	4
Clementoni MT et al. ²⁴	NAFL 1565 nm	sessions, 4–5 weeks apart	N/S	Multiple	1 2	F/M	Clinical improvement; reduced depression and discoloration	Transient erythema, edema	Case series	4
Oliveira Alves R et al. ²⁶	NAFL 1540 nm		Rubr a	Arms, thighs	4	F/M	Improvement after 3 rd session	Transient erythema, edema	Case series	4
Tay YK et al. ²⁷	NAFL 1450 nm (6 mm, 40 ms; 4, 8, 12 J) vs control	3 sessions, 6 weeks apart	Rubr a and alba	Multiple	1		No improvement vs control	Session erythema; PIH (64%)	Controlled comparativ e	1
Meningaud JP et al. ²⁸	NAFL 2940 nm	6 sessions, 4 weeks apart	N/S	N/S	2 0	F/M	Increased skin thickness, elasticity, and skin quality	Erythema during session	Case series	4
Wanitphakdeedec ha R et al. ²⁹	NAFL 2940 nm	2 sessions, 4 weeks apart; 400 mJ SP + 2.2 J/cm² smooth	N/S	Multiple	2 9	F/M	Significant improvement in both groups; no differences in roughness, smoothness, surface	Transient PIH in dark phototypes	Randomize d comparativ e	2
Kaewkes A et al.30	Fractional picosecond laser 1064 nm	4 sessions, 4 weeks apart	Alba	Abdomen	2 0	F (phototype s IV–V)	Significant texture improvement at 1 and 6 months; increased melanin at 1- month follow- up	PIH (2 cases)	Case series	4
Tang Z et al. ⁵⁹	NAFL 1565 nm vs MRF	3 sessions, 6 weeks apart	Alba	Abdomen	1 4	F	MRF significantly more effective clinically; both effective overall; no difference in satisfaction or melanin; more	Significantly more pain with MRF	Non- randomized comparativ e	3

Authors	Treatment	Dose	Type of Stria e	Location	N	Sex	Outcome	Adverse Effects	Study Type	Level of Evidenc e
							neocollagenesi s with MRF			
Gungor S et al.60	1064 nm Nd:YAG LP vs 2940 nm Er:YAG	3 sessions, 4 weeks apart	Rubr a and alba	Abdomen , arm (1), lumbar (2)	2 0	F	No clinical improvement in alba, though histologic changes present; neither treatment useful clinically	No complications with 1064 nm; erythema and PIH with 2940 nm	Non- randomized comparativ e	3
Cao Y et al. ⁶¹	Beta-glucan vs vehicle vs NAFL 1565 nm + vehicle vs NAFL 1565 nm + beta-glucan	3 sessions, 4 weeks apart; topicals twice daily × 12 weeks	Alba	Abdomen	6 4	F	Greater improvement with NAFL than beta- glucan; histology also favored NAFL	Not reported	Controlled comparativ e	1
Zaleski-Larson LA et al. ⁶²	Picosecond NAFL 1064/532 nm vs NAFL 1565 nm	3 sessions, 3 weeks apart	Alba	Abdomen	2 0	F	Significant texture improvement with both; no density differences; picosecond laser less painful and faster healing	Erythema, pain	Non- randomized comparativ e	3
Naspolini AP et al. ⁶³	1340 nm NAFL vs microneedlin g	5 sessions, 4 weeks apart	Alba	Abdomen	2 0	(phototype III–IV)	Improvement without significant group differences; increased collagen/elasti n in both	Erythema, pruritus; NAFL also caused PIH and crusting	Non- randomized comparativ e	3
Gauglitz GG et	NAFL 2940 nm vs PDL	5 sessions, 4 weeks apart	Rubr a	Axillae	2	M	Improvement in texture and color on Er:YAG side	PIH (1)	Case series	4

N, number of participants; F, female; M, male; N/R, not reported; N/S, not specified; MRF, microneedling radiofrequency; PDL, pulsed dye laser. Note: References outside the range [1–41] are included as supplementary data.

Table 5. Summary of Studies on the Treatment of Striae Using Non-Ablative Fractional Lasers (NAFL)

Authors	Treatment	Type of Striae	Location	N	Sex	Outcome	Adverse Effects	Study Type	Level of Evidence
Jiménez GP et al. ³¹	PDL 585 nm vs control	Rubra and alba	Multiple	20	F/M	Limited benefit in red striae; no change in white striae	Post-inflammatory hyperpigmentation in 1 phototype VI patient	Controlled comparative	1
McDaniel DH et al. ³²	PDL 585 nm vs control	Alba	Abdomen, thighs, breasts	39	F	Improvement with all parameters; best effectiveness with 3 J, 10-mm spot	N/R	Case series	4
Al Dhalimi MA et al. ³⁴	IPL 650 nm vs 590 nm	Rubra	N/S	20	F/M	Significant reduction with both; 590 nm more effective	Transient erythema and pain; PIH (2), more with 590 nm	Non- randomized comparative	3
Alexiades- Armenakas MR et al. ³⁵	Excimer 308 nm	Alba	Face, trunk, extremities	31	F/M	Colorimetric correction increased proportionally to number of sessions (> 9)	N/R	Controlled comparative	1
Shokeir H et al. ³³	PDL 585 nm vs IPL 565 nm	Rubra and alba	Multiple	20	F/M	Significant improvement with both; better response in red striae	Transient erythema, pain, pruritus; PIH	Non- randomized comparative	3
Elsaie ML et al. ⁶⁵	Nd:YAG 1064 nm LP (10 ms) 75 vs 100 J/cm ²	Rubra and alba	Trunk, back, shoulders	45	F/M	Significant improvement with 100 J/cm² in both types; no differences between fluences in rubra	Pain	Non- randomized comparative	3
Suh DH et al. ⁶⁶	Non-ablative RF + PDL	Rubra and alba	Abdomen	37	F/M	Subjective improvement and increased elasticity in most patients	Transient purpura (6); transient PIH (1)	Case series	4

N, number of participants; F, female; M, male; N/R, not reported; N/S, not specified; MRF, microneedling radiofrequency; LP, long pulse; PDL, pulsed dye laser. Note: References outside the range [1–41] are included as supplementary data.

Table 6. Summary of Studies on the Treatment of Striae Using Vascular Laser and Other Energy-Based Devices

Authors	Treatment	Dose	Type of Stria e		N	Sex	Outcome	Adverse Effects	Study	Level of Evidenc e
Suwanchin da A et al.41	pressure plasma (CAP)	ceccione	N/S	N/S	2	F/M	improvement	superficial	Controlled comparativ e	1
Ahmed NA et al. ³⁸	vs PRP vs		a and	Trunk and lower limbs	4 5	F	all groups, no significant	Pain and ecchymosis (PRP); erythema (RF)	Randomize d comparativ e	2

Authors	Treatment	Dose	Type of Stria e	Location	N	Sex	Outcome	Adverse Effects	Study Type	Level of Evidenc e
Hodeib AA et al. ³⁷	Carboxytherapy vs PRP	4 sessions every 3– 4 weeks	Alba	Multiple	2 0	F/M	Improvement, no significant intergroup differences	Mild ecchymosis and pain	Non- randomize d comparativ e	3
Manuskiatti W et al. ⁶⁷	Tripolar RF	6 weekly sessions	Rubr a and alba	Abdomen and thighs	1 7	F	Improvement; no differences in texture 1 and 6 weeks after therapy	N/R	Case series	4
Ibrahim ZAE et al. ³⁶	PRP vs microdermabrasi on vs PRP + microdermabrasi on	6 sessions every 15 days	Rubr a and alba	Multiple	6	F/M	PRP and PRP + microdermabrasi on superior to microdermabrasi on alone	Pain, ecchymosis; worsening with PRP in 3 cases	Randomize d comparativ e	2
Ferreira ACR et al. ⁶⁸	Galvanopuncture vs microdermabrasi on vs control	10 weekly sessions	Alba	Buttocks	4 8	F	Improvement without significant inter- group differences	Pain	Randomize d controlled	1
Nassar A et al. ⁶⁹	Microneedling vs microdermabrasi on + sonophoresis	Biweekl y or monthly sessions	Rubr a and alba	Thighs and legs	4 0	F	Significant improvement with microneedling	Transient erythema and PIH	Non- randomize d comparativ e	3
Harmelin Y et al. ⁷⁰	Bipolar RF vs IR-enhanced bipolar RF vs IR+RF vs control	3 monthly sessions	N/S	Abdomen	2	F/M	No differences among active treatments or control	Transient pain related to RF	Controlled comparativ e	1
Montesi G et al. ⁷¹	Bipolar RF	6–8 sessions , every 2 weeks	N/S	Abdomen, buttocks, scapulohumer al region	3	N/S	Improvement from second session onward	Transient ecchymosis; blisters (2)	Case series	4
Tian T et al. ⁷²	RF vs tretinoin vs combination vs control	RF: 3 sessions every 3 months; tretinoin daily ×1 week	a and	Abdomen	1 8	F	Significant improvement with combined treatment	Mild pain, erythema, edema (RF-related)	Controlled comparativ e	1
Luis- Montoya P et al. ³⁹	Subcision vs tretinoin 0.1% vs combination	N/S	Alba	N/S	1 4	N/S	Reduction in width and clinical improvement in all 3 groups; no significant inter- group differences	Necrosis (3) with subcision	Non- randomize d comparativ e	3
Sadick NS et al. ⁴⁰	Narrowband UVB/UVA1	10 sessions , twice weekly	Alba	N/S	1 4	F/M	> 51% repigmentation > 50% hyperpigmentatio	Erythema, hyperpigmentati on	Case series	4

Authors	Treatment		Type of Stria e		N	Sex	Outcome	Adverse Effects	Study	Level of Evidenc e
Costa DC de O et al. ⁷³		session, evaluate d at 180 days	Alba	Buttocks	1 8	nhototym		PIH with all	Randomize d comparativ e	2
Lima EVA de A et al. ⁷⁴	Fractional microneedling RF	One session, 60-day follow- up	N/S	N/S	8	F	Partial improvement; high patient satisfaction	Transient PIH in 6 patients	Case series	4

PDL, pulsed dye laser; IPL, intense pulsed light; RF, radiofrequency; N, number of participants; F, female; M, male; N/R, not reported; N/S, not specified. Note: References outside the range [1–41] are included as supplementary data.

 $\textbf{Table 7}. \ \textbf{Summary of studies on the treatment of striae with other therapies}.$

Authors	Treatment	Dose	Type of Stria e	Location	N	Sex	Outcome	Adverse Effects	Study Type	Level of Eviden ce
Suwanchin da A, et al. ⁴¹	Cold atmospheric pressure plasma (CAP)	5 sessions , 15 days apart	N/E	N/E	2 3	M/H	Significant improvement after one session	Scabs and superficial wounds	Controlled comparati ve	1
Ahmed NA, et al. ³⁸	Carboxytherapy vs PRP vs Tripolar RF	5 weekly sessions	Rubr a and alba	Trunk and lower limbs	4 5	М	All groups improved with no significant differences	Pain and bruising (PRP), erythema (RF)	Randomiz ed comparati ve	2
Hodeib AA, et al. ³⁷	Carboxytherapy vs PRP	sessions , 3–4 weeks apart	Alba	Multiple	2	М/Н	Improvement without significant differences	Mild bruising and pain	Non- randomize d comparati ve	3
Manuskiatt i W, et al. ⁶⁷	Tripolar RF	6 weekly sessions	Rubr a and alba	Abdomen and thighs	1 7	М	Improvement; no texture difference at 1 and 6 weeks	N/R	Case series	4
Ibrahim ZAE, et al. ³⁶	PRP vs Microdermabras ion vs PRP + microdermabras ion	15	Rubr a and alba	Multiple	6	М/Н	Improvement with PRP and combination vs microdermabras ion alone	Pain, bruising; worsening with PRP (3 cases)	Randomiz ed comparati ve	2
Ferreira ACR, et al. ⁶⁸	Galvanopunctur e vs microdermabras ion vs Control	10 weekly sessions	Alba	Gluteal region	4 8	М	Improvement with no significant differences	Pain	Randomiz ed controlled	1

Authors	Treatment	Dose	Type of Stria e	Location	N	Sex	Outcome	Adverse Effects	Study Type	Level of Eviden ce
Nassar A, et al. ⁶⁹	Microneedling vs microdermabras ion + Sonophoresis	Biweekl y or monthly sessions	a and	Thighs and legs	4 0	М	Significant improvement with microneedling	Transient erythema and PIH	Non- randomize d comparati ve	3
Harmelin Y, et al. ⁷⁰	Bipolar RF vs Enhanced bipolar RF + IR light vs IR+RF vs Control	3 monthly sessions	N/E	Abdomen	2 2	М/Н	No differences between treatments and control	RF-related transient pain	Controlled comparati ve	1
Montesi G, et al. ⁷¹	Bipolar RF	6–8 sessions , 2 weeks apart	N/E	Abdomen, gluteal region, scapulohume ral area	3 0	N/E	Improvement from 2 nd session onwards	Transient bruising, blisters (2)	Case series	4
Tian T, et al. ⁷²	RF vs Tretinoin vs Combination vs Control	months;	Rubr a and alba	Abdomen	1 8	М	Significant improvement with combination therapy	RF-related mild pain, erythema, edema	Controlled comparati ve	1
Luis- Montoya P, et al. ³⁹	Subcision vs Tretinoin 0.1% vs Combination	N/E	Alba	N/E	1 4	N/E	Reduced width and clinical improvement in all groups	Necrosis (3) with subcision	Non- randomize d comparati ve	3
Sadick NS, et al. ⁴⁰	Narrowband UVB/UVA1	10 sessions , twice weekly	Alba	N/E	1 4	М/Н	Repigmentation in > 51% Hyperpigmentat ion in > 50%	Erythema, hyperpigmentati on	Case series	4
Costa DC de O, et al. ⁷³	Microneedling + 5-FU vs 5-FU vs microneedling	1 session, 180-day follow- up	Alba	Gluteal region		M/H (phototy pe III– V)	Partial improvement	Hyperpigmentat ion in all groups		2
Lima EVA de A, et al. ⁷⁴	Fractional RF with microneedles	session, 60-day follow- up	N/E	_	8	М	Partial improvement; high patient satisfaction	Transient hyperpigmentati on in 6 patients	Case series	4

PRP, platelet-rich plasma; RF, radiofrequency; N, number of participants; F, female; M, male; N/R, not reported; N/S, not specified. Note: References outside the range [1–41] are included as supplementary data.

TRADUCCIÓN DE LA FIGURA

Tratamiento de estrías

Estría ribra

Estría alba
Tratamientos tópicos
Tratamiento con dispositivos
Tretinoína 0,1%, aplicación diaria
Ácido glicólico 70%, peeling mensual.
Ácido glicólico 70%, aplicación diaria
Opción preferida:
MRF
Treatment of striae Striae rubra Striae alba
Topical therapies
Device-based treatments
Tretinoin 0.1%, daily application
Glycolic acid 70%, monthly peeling
Glycolic acid 20%, daily application
Preferred option:
MRF CO2, modo fraccionado
Al menos 3 sesiones, separadas 4 semanas
Otras opciones:
Láseres no ablativos
PDL 585 nm
IPL con filtros vasculares
Opción preferida:
MRF
CO2, modo fraccionado
Al menos 3 sesiones, separadas 4 semanas
Otras opciones:
Láseres no ablativos

CO₂, fractional mode

At least 3 sessions, spaced 4 weeks apart

Other options:

Non-ablative lasers

PDL 585 nm

IPL with vascular filters

Preferred option:

MRF

CO₂, fractional mode

At least 3 sessions, spaced 4 weeks apart

Other options:

Non-ablative lasers

TRADUCCIÓN DEL GRAPHICAL ABSTRACT

Revisión sistemática sobre tratamiento y prevención estrías PubMed y LILACS (1976-2024)

Clasificación según nivel de evidencia

Se incluyeron 69 trabajos:

Terapias tópicas (20): tretinoína al 0,1% y ácido glicólico a distintas concentraciones han demostrado eficacia en el tratamiento.

Láser y otras fuentes de luz (35): láseres ablativos fraccionados y no ablativos y radiofrecuencia con microagujas, presentan mejoría clínica tanto en estría rubra como alba.

Otros tratamientos (14): PRP ha resultado útil especialmente en combinación.

Systematic review on the treatment and prevention of striae PubMed and LILACS (1976–2024)

Classification according to level of evidence

A total of 69 studies were included:

Topical therapies (20): 0.1% tretinoin and glycolic acid at various concentrations have demonstrated efficacy in treatment.

Lasers and other light sources (35): fractional ablative and non-ablative lasers, as well as microneedling radiofrequency, show clinical improvement in both striae rubra and alba. Other treatments (14): PRP has been especially useful when combined with other modalities.

Limitaciones:

Baja calidad de algunos estudios

Tamaño de la muestra pequeño

La evidencia actual no permite definir un tratamiento único siendo necesaria su combinación.

Limitations:

Low quality of some studies

Small sample sizes

Current evidence does not allow the definition of a single optimal treatment, making combination therapy necessary.