

ACTASDermo-Sifiliográficas

Full English text available at www.actasdermo.org

RESIDENT'S FORUM

[Translated article] RF-Chimeric Antigen Receptor T (CAR-T) Cell Therapy in Dermatology

FR-Terapia de células T con receptores quiméricos de antígenos (CAR-T) en dermatología

E.L. Pinto-Pulido (10 a.*, G. López de Hontanar-Torres b

KEYWORDS

CAR-T therapy; Immunotherapy; Dermatologic oncology; Autoimmune diseases; Cutaneous adverse effects

PALABRAS CLAVE

Terapia CAR-T; Inmunoterapia; Oncología dermatológica; Enfermedades autoinmunes; Efectos adversos cutáneos

The development of chimeric antigen receptor T-cell (CAR-T) therapies is revolutionizing the treatment of hematological malignancies. At the same time, their utility is being investigated in other cancers and autoimmune diseases¹ where dermatologists play a fundamental role.

DOI of original article: https://doi.org/10.1016/j.ad.2024.10.073

* Corresponding author.

E-mail address: elucia.pinto95@gmail.com (E.L. Pinto-Pulido).

CAR-T cells are autologous T cells transduced with a chimeric receptor targeted against an antigen. T cells are collected from the patient via peripheral blood apheresis and using a viral vector are transduced with a gene that targets a tumor antigen. Afterwards, the patient receives lymphodepleting chemotherapy, and CAR-T cells are infused; these cells are expected to engraft and expand. CD19-targeted CAR-T cells have demonstrated efficacy in the treatment of B-cell hematological neoplasms. Specific toxicities have been reported, such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and hematological toxicity. Furthermore, the use of allogeneic CAR-T and CAR-NK cells is also being studied.

Cutaneous lymphomas often exhibit a less aggressive behavior, allowing for local therapies. However, their management in advanced cases (generally T-cell lymphomas) is complex. Unfortunately, CAR-T cells have not been successfully developed for T-cell malignancies due to similarities between healthy and tumor T cells, which lead to the potential development of T-cell aplasia or contamination of the product (obtaining CAR-T cells that include tumor cells). As for melanoma, despite being a significant area of research, only the results of one clinical trial have been published. It included 3 patients refractory to, at least, 2 lines of immunotherapy who received CAR-T cells targeting the oncogene MET. All discontinued treatment due to progression. Other

a Servicio de Dermatología, Hospital Universitario Príncipe de Asturias, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain

^b Servicio de Hematología, Hospital Universitario Príncipe de Asturias, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain

tumor targets are being investigated, such as tyrosinase-related protein 1 (TRP1), which has shown antitumor activity in mice and patient-derived preclinical models.⁶

Beyond oncology, this therapy is emerging as a promise in autoimmune diseases. A recent article has been published on patients with severe systemic lupus erythematosus (SLE; n=8), idiopathic inflammatory myositis (IIM; n=3), and systemic sclerosis (SSc; n=4) all treated with CD19-targeted CAR-T cells. All had cutaneous involvement except for 2 patients with IIM. At 6 months, complete remission was achieved in all patients with SLE or IIM, and a reduction in pulmonary and cutaneous activity was reported in patients with SSc. All remained stable during follow-up (median, 15 months, range, 4–29), without other immunosuppressive treatments. Remission of pathological autoantibodies was observed, even after complete B-cell reconstitution, supporting the idea that CAR-T cells may induce an immunological reset, leading to long-term sustained remission. 1

Cutaneous adverse effects with this therapy appear in 4–36% of patients, depending on the consulted series. Most consist of mild/moderate maculopapular rashes. However, bullous and petechial eruptions have been reported, and some patients require systemic treatment. Their etiopathogenesis is uncertain, possibly linked to CRS or cross-reactivity with cutaneous antigens similar to the CAR-T target, though their prognostic implication has not yet been studied.²

Funding

None declared.

References

- Müller F, Taubmann J, Bucci L, Wilhelm A, Bergmann C, Völkl S, et al. CD19 CAR T-cell therapy in autoimmune disease a case series with follow-up. N Engl J Med. 2024;390:687–700, http://dx.doi.org/10.1056/NEJMoa2308917.
- Nusbaum KB, Dulmage B, Choi JN, Jaglowski SM, Korman AM. Cutaneous manifestations of chimeric antigen receptor T-cell therapy: an introduction for dermatologists. J Am Acad Dermatol. 2022;87:597-604, http://dx.doi.org/10.1016/j.jaad.2021.07.017.
- 3. Marin D, Li Y, Basar R, Rafei H, Daher M, Dou J, et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat Med. 2024;30:772-84, http://dx.doi.org/10.1038/s41591-023-02785-8.
- 4. To V, Evtimov VJ, Jenkin G, Pupovac A, Trounson AO, Boyd RL. CAR-T cell development for cutaneous T cell lymphoma: current limitations and potential treatment strategies. Front Immunol. 2022;13:968395, http://dx.doi.org/10.3389/fimmu.2022.968395.
- Shah PD, Huang AC, Xu X, Orlowski R, Amaravadi RK, Schuchter LM, et al. Trial of autologous RNA-electroporated cMET-directed CAR T cells administered intravenously in patients with melanoma and breast carcinoma. Cancer Res Commun. 2023;3:821-9, http://dx.doi.org/10.1158/2767-9764.CRC-22-0486.
- Jilani S, Saco JD, Mugarza E, Pujol-Morcillo A, Chokry J, Ng C, et al. CAR-T cell therapy targeting surface expression of TYRP1 to treat cutaneous and rare melanoma subtypes. Nat Commun. 2024;15:1244, http://dx.doi.org/10.1038/s41467-024-45221-2.