was read the article
array:24 [ "pii" => "S1578219015002450" "issn" => "15782190" "doi" => "10.1016/j.adengl.2015.09.010" "estado" => "S300" "fechaPublicacion" => "2015-11-01" "aid" => "1204" "copyright" => "Elsevier España, S.L.U. and AEDV" "copyrightAnyo" => "2015" "documento" => "article" "crossmark" => 1 "subdocumento" => "ssu" "cita" => "Actas Dermosifiliogr. 2015;106:725-32" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1203 "formatos" => array:3 [ "EPUB" => 58 "HTML" => 605 "PDF" => 540 ] ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S0001731015002732" "issn" => "00017310" "doi" => "10.1016/j.ad.2015.05.008" "estado" => "S300" "fechaPublicacion" => "2015-11-01" "aid" => "1204" "copyright" => "Elsevier España, S.L.U. and AEDV" "documento" => "article" "crossmark" => 1 "subdocumento" => "ssu" "cita" => "Actas Dermosifiliogr. 2015;106:725-32" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 2780 "formatos" => array:3 [ "EPUB" => 2 "HTML" => 315 "PDF" => 2463 ] ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Revisión</span>" "titulo" => "Células madre de la piel: en la frontera entre el laboratorio y la clínica. Parte <span class="elsevierStyleSmallCaps">I</span>: células madre epidérmicas" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "725" "paginaFinal" => "732" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Skin Stem Cells: At the Frontier Between the Laboratory and Clinical Practice. Part 1: Epidermal Stem Cells" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figura 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1667 "Ancho" => 3278 "Tamanyo" => 707772 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Estructura del folículo piloso y distintos tipos de células madre epidérmicas.</p> <p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">La figura 1 muestra (A) microfotografía del folículo piloso (H-E, ×<span class="elsevierStyleHsp" style=""></span>20) y (B) ilustración de los distintos tipos de células madre y células progenitoras en la epidermis, así como sus marcadores específicos.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "I. Pastushenko, L. Prieto-Torres, Y. Gilaberte, C. Blanpain" "autores" => array:4 [ 0 => array:2 [ "nombre" => "I." "apellidos" => "Pastushenko" ] 1 => array:2 [ "nombre" => "L." "apellidos" => "Prieto-Torres" ] 2 => array:2 [ "nombre" => "Y." "apellidos" => "Gilaberte" ] 3 => array:2 [ "nombre" => "C." "apellidos" => "Blanpain" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S1578219015002450" "doi" => "10.1016/j.adengl.2015.09.010" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219015002450?idApp=UINPBA000044" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731015002732?idApp=UINPBA000044" "url" => "/00017310/0000010600000009/v1_201511040159/S0001731015002732/v1_201511040159/es/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S1578219015002413" "issn" => "15782190" "doi" => "10.1016/j.adengl.2015.09.006" "estado" => "S300" "fechaPublicacion" => "2015-11-01" "aid" => "1215" "copyright" => "Elsevier España, S.L.U. and AEDV" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Actas Dermosifiliogr. 2015;106:733-9" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1135 "formatos" => array:3 [ "EPUB" => 59 "HTML" => 728 "PDF" => 348 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original Article</span>" "titulo" => "Otologic Manifestations of Autosomal Recessive Congenital Ichthyosis in Children" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "733" "paginaFinal" => "739" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Manifestaciones otológicas en los niños con ictiosis congénitas autosómicas recesivas" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1462 "Ancho" => 3001 "Tamanyo" => 591377 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">Case 4. A, Collodion baby phenotype at 24<span class="elsevierStyleHsp" style=""></span>hours old. B, Marked ectropion at 3 weeks of age. C, Lamellar ichthyosis phenotype at 4 years of age.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "A. Martín-Santiago, M. Rodríguez-Pascual, N. Knöpfel, Á. Hernández-Martín" "autores" => array:4 [ 0 => array:2 [ "nombre" => "A." "apellidos" => "Martín-Santiago" ] 1 => array:2 [ "nombre" => "M." "apellidos" => "Rodríguez-Pascual" ] 2 => array:2 [ "nombre" => "N." "apellidos" => "Knöpfel" ] 3 => array:2 [ "nombre" => "Á." "apellidos" => "Hernández-Martín" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0001731015002872" "doi" => "10.1016/j.ad.2015.06.003" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731015002872?idApp=UINPBA000044" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219015002413?idApp=UINPBA000044" "url" => "/15782190/0000010600000009/v1_201511040157/S1578219015002413/v1_201511040157/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S1578219015002449" "issn" => "15782190" "doi" => "10.1016/j.adengl.2015.09.009" "estado" => "S300" "fechaPublicacion" => "2015-11-01" "aid" => "1218" "copyright" => "Elsevier España, S.L.U. and AEDV" "documento" => "article" "crossmark" => 1 "subdocumento" => "ssu" "cita" => "Actas Dermosifiliogr. 2015;106:716-24" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 1782 "formatos" => array:3 [ "EPUB" => 38 "HTML" => 751 "PDF" => 993 ] ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review</span>" "titulo" => "Update on Hidradenitis Suppurative (Part II): Treatment" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "716" "paginaFinal" => "724" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Actualización en hidradenitis supurativa (<span class="elsevierStyleSmallCaps">ii</span>): aspectos terapéuticos" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 3923 "Ancho" => 3257 "Tamanyo" => 812875 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Treatment algorithm for hidradenitis suppurativa.</p> <p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">Source: Martorell.<a class="elsevierStyleCrossRef" href="#bib0450"><span class="elsevierStyleSup">45</span></a></p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "A. Martorell, F.J. García, D. Jiménez-Gallo, J.C. Pascual, J. Pereyra-Rodríguez, L. Salgado, E. Vilarrasa" "autores" => array:7 [ 0 => array:2 [ "nombre" => "A." "apellidos" => "Martorell" ] 1 => array:2 [ "nombre" => "F.J." "apellidos" => "García" ] 2 => array:2 [ "nombre" => "D." "apellidos" => "Jiménez-Gallo" ] 3 => array:2 [ "nombre" => "J.C." "apellidos" => "Pascual" ] 4 => array:2 [ "nombre" => "J." "apellidos" => "Pereyra-Rodríguez" ] 5 => array:2 [ "nombre" => "L." "apellidos" => "Salgado" ] 6 => array:2 [ "nombre" => "E." "apellidos" => "Vilarrasa" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0001731015002902" "doi" => "10.1016/j.ad.2015.06.005" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0001731015002902?idApp=UINPBA000044" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219015002449?idApp=UINPBA000044" "url" => "/15782190/0000010600000009/v1_201511040157/S1578219015002449/v1_201511040157/en/main.assets" ] "en" => array:21 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Review</span>" "titulo" => "Skin Stem Cells: At the Frontier Between the Laboratory and Clinical Practice. Part 1: Epidermal Stem Cells" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "725" "paginaFinal" => "732" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "I. Pastushenko, L. Prieto-Torres, Y. Gilaberte, C. Blanpain" "autores" => array:4 [ 0 => array:4 [ "nombre" => "I." "apellidos" => "Pastushenko" "email" => array:1 [ 0 => "jane.pastushenko@gmail.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "L." "apellidos" => "Prieto-Torres" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 2 => array:3 [ "nombre" => "Y." "apellidos" => "Gilaberte" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 3 => array:3 [ "nombre" => "C." "apellidos" => "Blanpain" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">e</span>" "identificador" => "aff0025" ] ] ] ] "afiliaciones" => array:5 [ 0 => array:3 [ "entidad" => "Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Bruselas, Bélgica" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Servicio de Dermatología, Hospital Clínico Lozano Blesa, Zaragoza, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Servicio de Dermatología, Hospital San Jorge, Huesca, Spain" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain" "etiqueta" => "d" "identificador" => "aff0020" ] 4 => array:3 [ "entidad" => "Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Université Libre de Bruxelles (ULB), Bruselas, Bélgica" "etiqueta" => "e" "identificador" => "aff0025" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Células madre de la piel: en la frontera entre el laboratorio y la clínica. Parte <span class="elsevierStyleSmallCaps">I</span>: células madre epidérmicas" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 965 "Ancho" => 3090 "Tamanyo" => 233513 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Concept of lineage tracing.</p> <p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">The figure shows a schematic of the information obtained from lineage tracing experiments. The technique consists of introducing a reporter gene associated with the marker of the cells of interest (A), thereby obtaining a fluorescent signal in the subgroup of cells of interest. All daughter cells of the labelled cells also have a fluorescent signal (B), but the intensity of the signal will decrease as the cells continue to divide. Thus, on the one hand, we can identify cells descended from the initially labelled cells, and on the other, assess the rate of division (the cells that maintain an intense signal over time will be the quiescent cells that divide very slowly—the stem cells—whereas the cells that lose color intensity will be the compromised progenitor cells [C]).</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">Stem cells are defined by 2 fundamental characteristics: their capacity for self-renewal and for differentiation into all cell lines within their tissue of origin.<a class="elsevierStyleCrossRef" href="#bib0255"><span class="elsevierStyleSup">1</span></a></p><p id="par0010" class="elsevierStylePara elsevierViewall">In adults, stem cells have been identified in different organs, including the skin, intestine, muscle, hematopoietic system, and even the human brain.<a class="elsevierStyleCrossRef" href="#bib0260"><span class="elsevierStyleSup">2</span></a> These cells are responsible for maintaining tissue homeostasis where they reside and also for repairing damage when it occurs.</p><p id="par0015" class="elsevierStylePara elsevierViewall">The discovery of stem cells in adult organisms and characterization of their markers to enable isolation of specific cells have opened up new perspectives and new horizons in biomedical research, with new hopes for treatment in an range of diseases. Epidermal stem cells are of particular interest as they are relatively numerous and also accessible, making them easy to obtain. In the first part of this review, we have aimed to summarize the main findings of basic research in the field of epidermal stem cells. We then discuss their potential applications in clinical dermatology.</p></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0030">Different Stem Cell Populations in the Epidermis</span><p id="par0020" class="elsevierStylePara elsevierViewall">Two types of progenitor cell are present in the basal layer of the interfollicular epidermis: α6<span class="elsevierStyleSup">+</span>CD34<span class="elsevierStyleSup">–</span> stem cells, characterized by slow division rates (4-6 times a year) and a long lifespan, and basal layer K14<span class="elsevierStyleSup">+</span>Inv<span class="elsevierStyleSup">+</span> progenitor cells,<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">3</span></a> as well as possibly Axin2<span class="elsevierStyleSup">+</span> cells,<a class="elsevierStyleCrossRef" href="#bib0270"><span class="elsevierStyleSup">4</span></a> characterized by faster division rates (once a week) and shorter lifespan. After a certain number of divisions these cells undergo terminal differentiation into differentiated keratinocytes, thereby losing their capacity for division. <a class="elsevierStyleCrossRef" href="#tbl0005">Table 1</a> summarizes the main characteristics of the markers.</p><elsevierMultimedia ident="tbl0005"></elsevierMultimedia><p id="par0025" class="elsevierStylePara elsevierViewall">The hair follicle has 3 phases: anagen or growth phase (lasting on average 3 years), catagen or involuting phase (which lasts several weeks), and telogen or resting phase (which lasts several months). The stem cells responsible for hair follicle regeneration during anagen reside in the bulge (the lower part of the permanent portion of the hair follicle) and are characterized by expression of the markers CD34, Lgr5, and K15. The cells are multipotent,<a class="elsevierStyleCrossRef" href="#bib0275"><span class="elsevierStyleSup">5</span></a> as they can differentiate into all cell lines present in the hair follicle unit. During anagen, the stem cells in the bulge give rise to transit-amplifying cells, which reside in the hair follicle. These rapidly and transiently proliferate before embarking on 7 differentiation programs which finally give rise to the mature hair follicle. When the matrix cells have exhausted their proliferative capacity, hair growth stops and the follicle enters catagen,<a class="elsevierStyleCrossRef" href="#bib0280"><span class="elsevierStyleSup">6</span></a> leading to degeneration of the lower two-thirds of the follicle while the bulge region remains intact.</p><p id="par0030" class="elsevierStylePara elsevierViewall">The hair bulb is found in the lower part of the hair follicle. This structure, which rests on the dermal papilla, is made up of differentiated progeny of stem cells from the bulge. The dermal papilla contains specialized dermal fibroblasts, nerve fibers, and a capillary loop. It plays a fundamental role in the development of the hair follicle and control of the hair cycle in adults.<a class="elsevierStyleCrossRef" href="#bib0285"><span class="elsevierStyleSup">7</span></a> Cells in the dermal papilla can differentiate into neuronal and mesodermal cell lines.<a class="elsevierStyleCrossRefs" href="#bib0290"><span class="elsevierStyleSup">8,9</span></a> In a recent study, Rahmani et al.<a class="elsevierStyleCrossRef" href="#bib0300"><span class="elsevierStyleSup">10</span></a> eliminated stem cells from the dermal papilla and observed a delay in the regeneration of the hair follicle, along with change in hair type, suggesting that the dermal papilla plays a fundamental role in restoring hair growth after damage, disease, or aging.</p><p id="par0035" class="elsevierStylePara elsevierViewall">At least 3 types of epithelial stem cells have been identified recently: these types reside in the sebaceous glands, the infundibulum, and sweat glands. The sebaceous glands are maintained by unipotent Lgr6<span class="elsevierStyleSup">+</span> stem cells, which originate from Blimp1<span class="elsevierStyleSup">+</span> progenitor cells.<a class="elsevierStyleCrossRef" href="#bib0305"><span class="elsevierStyleSup">11</span></a> In addition, stem cells from the isthmus express the MTS234 marker,<a class="elsevierStyleCrossRef" href="#bib0310"><span class="elsevierStyleSup">12</span></a> and if transplanted to an immunodeficient mouse, are surprisingly able to give rise to epidermal, follicular, and sebaceous cell lines, suggesting that these might be multipotent cells.<a class="elsevierStyleCrossRef" href="#bib0315"><span class="elsevierStyleSup">13</span></a> The stem cells in the infundibulum are characterized by expression of the Lrig1 marker and their multipotent capacity.<a class="elsevierStyleCrossRef" href="#bib0320"><span class="elsevierStyleSup">14</span></a> It is also thought that they may contribute to the homeostasis of the sebaceous glands.<a class="elsevierStyleCrossRef" href="#bib0325"><span class="elsevierStyleSup">15</span></a> Finally, although sweat glands have traditionally be considered as quiescent in adults, a study published recently suggests 4 different types of progenitor cells are present in the epithelium of these structures.<a class="elsevierStyleCrossRef" href="#bib0330"><span class="elsevierStyleSup">16</span></a><a class="elsevierStyleCrossRef" href="#fig0005">Figure 1</a> shows a microphotograph of the hair follicle (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>A) and a schematic of the different compartments in the epithelium of the skin and where the stem cells reside, as well as a summary of their markers (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>B).</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Self-Renewal of Stem Cells</span><p id="par0040" class="elsevierStylePara elsevierViewall">As mentioned earlier, stem cells can give rise to differentiated cells, but they also propagate to maintain a constant pool of stem cells, and can divide symmetrically or asymmetrically. During the process of asymmetric division, a stem cell gives rise to a daughter cell with the same phenotype, and another daughter cell which will differentiate. Symmetric division of a stem cell gives rise to 2 identical daughter cells, both with a differentiated or somewhat differentiated phenotype (Fig. 2<span class="elsevierStyleHsp" style=""></span>A).</p><p id="par0045" class="elsevierStylePara elsevierViewall">During the development of the embryo, most basal cell divisions are symmetric and parallel to the axis of the basal membrane (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>B), thereby allowing growth of the embryo surface and ensuring that the epithelium remains as a single layer. In contrast, during stratification of the epithelium, approximately 70% of divisions are asymmetric (Fig. 2<span class="elsevierStyleHsp" style=""></span>C),<a class="elsevierStyleCrossRefs" href="#bib0280"><span class="elsevierStyleSup">6,17</span></a> thereby allowing development of suprabasal cells and establishment of the skin barrier during development and epidermal homeostasis in adulthood.</p><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Role of Epidermal Stem Cells in Skin Homeostasis and Scarring</span><p id="par0050" class="elsevierStylePara elsevierViewall">Homeostasis is a physiological process whereby the number of cells with capacity for regeneration in a given organ remains constant. In skin homeostasis, the stem cells in each compartment are those responsible for replacing the differentiated cells that die in that compartment. However, during the evolutionary process, stem cells have acquired the capacity to participate in the repair of neighboring compartments in the event that stem cells in those compartments become damaged.</p><p id="par0055" class="elsevierStylePara elsevierViewall">The form in which stem cells respond to damage varies drastically, depending not only on the compartment where these reside, but also how close they are to the wound.<a class="elsevierStyleCrossRef" href="#bib0340"><span class="elsevierStyleSup">18</span></a> The technique of in vivo lineage tracing offers valuable functional information on the behavior of stem cells in homeostasis and during tissue repair, given that cell development can be followed over time in the natural environment (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>).</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><p id="par0060" class="elsevierStylePara elsevierViewall">During repair of damage to the interfollicular epidermis, massive recruitment of interfollicular stem cells to the area of the wound occurs.<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">3</span></a> Clones derived from these cells are observed migrating from the periphery of the wound towards the center, and remaining there for a long time after healing. However, much fewer Inv<span class="elsevierStyleSup">+</span> cells (short-lived progenitors) migrate towards the damaged zone, the clones are much smaller, and 35 days after injury, most of these have disappeared.<a class="elsevierStyleCrossRef" href="#bib0265"><span class="elsevierStyleSup">3</span></a> That is, it seems that the short-lived progenitors are responsible for maintaining homeostasis of the epidermis in normal conditions, whereas stem cells, which are normally in a quiescent state, are activated when an injury occurs (wounds or drug administration).<a class="elsevierStyleCrossRef" href="#bib0345"><span class="elsevierStyleSup">19</span></a></p><p id="par0065" class="elsevierStylePara elsevierViewall">In addition, stem cells both in the bulge and in the infundibulum can migrate towards the epidermis in response to a wound stimulus, and participate in repair of the damage. Surprisingly, and through mechanisms that are still not well understood, when these cells migrate towards the epidermis, they lose their specific hair follicle markers and adopt a phenotype more similar to those of the stem cells of the interfollicular epidermis. However, once in the epidermis, these cells are short-lived and disappear soon after repair of the damaged tissue.<a class="elsevierStyleCrossRefs" href="#bib0350"><span class="elsevierStyleSup">20,21</span></a></p><p id="par0070" class="elsevierStylePara elsevierViewall">Another phenomenon of great interest, which was observed on elimination of stem cells of a specific component of the epidermis with laser light, was that the empty niches were able to recruit normal differentiated cells from that compartment and induce cell proliferation and undifferentiation towards a state similar to that of stem cells.<a class="elsevierStyleCrossRefs" href="#bib0360"><span class="elsevierStyleSup">22,23</span></a></p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Epidermal Stem Cells as the Origin of Nonmelanoma Skin Cancer Cells</span><p id="par0075" class="elsevierStylePara elsevierViewall">The identification of the cells that give rise to cancer is still a challenge in most malignant tumors. Theoretically, these cells acquire the first genetic or epigenetic abnormalities that culminate in the initiation of the malignant process.<a class="elsevierStyleCrossRef" href="#bib0370"><span class="elsevierStyleSup">24</span></a> It follows that, given their characteristics (capacity for self-renewal over a long period of time), stem cells are at an increased risk of accumulating oncogenic mutations, and so they may be the cells that initiate the cancer.<a class="elsevierStyleCrossRefs" href="#bib0375"><span class="elsevierStyleSup">25,26</span></a></p><p id="par0080" class="elsevierStylePara elsevierViewall">Using mice modified genetically with the inducible CreER-LoxP system (CreER refers to the estrogen receptor [ER] Cre-recombinase enzyme, such that administration of tamoxifen induces recombination of Cre, with the subsequent activation or deletion of the target gene), it has been shown that activation of the SmoM2 mutation in stem cells of the bulge or in transit-amplifying cells of the hair follicle did not induce tumor formation in basal cell carcinoma.<a class="elsevierStyleCrossRefs" href="#bib0385"><span class="elsevierStyleSup">27,28</span></a> In fact, the authors demonstrated that 90% of surface-spreading basal cell carcinomas originate from the interfollicular epidermis and the remaining 10% originate in the infundibulum.</p><p id="par0085" class="elsevierStylePara elsevierViewall">In the case of spindle-cell carcinoma in mice, expression of the <span class="elsevierStyleItalic">KRas</span> mutation in stem cells in the bulge and in the interfollicular epidermis, but not in transit-amplifying cells, induces the formation of benign tumors but combination of the <span class="elsevierStyleItalic">KRas</span> mutation and deletion of the tumor suppressor gene p53 is necessary for progression to carcinoma.<a class="elsevierStyleCrossRef" href="#bib0395"><span class="elsevierStyleSup">29</span></a></p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Potential Applications of Stem Cells in Clinical Dermatology</span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0055">Burns</span><p id="par0090" class="elsevierStylePara elsevierViewall">For the treatment of extensive skin burns, successful outcomes have been obtained with in vitro epidermis generated using autologous epidermal stem cells from a biopsy of undamaged patient's skin.<a class="elsevierStyleCrossRef" href="#bib0400"><span class="elsevierStyleSup">30</span></a> The skin biopsy sample is dissociated with tripsin<a class="elsevierStyleCrossRef" href="#bib0405"><span class="elsevierStyleSup">31</span></a> and the epidermal stem cells are isolated. These are then expanded on a base of irradiated fibroblasts, which secrete extracellular matrix and growth factors, making the environment particularly conducive to keratinocyte proliferation.<a class="elsevierStyleCrossRef" href="#bib0410"><span class="elsevierStyleSup">32</span></a> The keratinocytes are cultured until formation of a stratified epithelium that can be used to cover the wound. However, there are 2 main drawbacks with this technique: the first is the long time needed for in vitro expansion of keratinocytes and the second is the high cost of the procedure.<a class="elsevierStyleCrossRef" href="#bib0415"><span class="elsevierStyleSup">33</span></a></p><p id="par0095" class="elsevierStylePara elsevierViewall">Of note is that the skin obtained with this method does not have any appendages (hair follicles or sweat glands). In a third-degree burn, the disappearance of hair follicles is due not only to destruction of multipotent stem cells in the follicle but also to the destruction of the dermis (the papillary dermis). To achieve regeneration of the hair follicles, cells from the papillary dermis need to be transplanted along with keratinocytes.<a class="elsevierStyleCrossRef" href="#bib0420"><span class="elsevierStyleSup">34</span></a> In a recently published study, researchers managed to transplant human cells from the papillary dermis to a nude mouse (immunodeficient and without fur) and reported the regeneration of hair follicles.<a class="elsevierStyleCrossRef" href="#bib0425"><span class="elsevierStyleSup">35</span></a> To achieve a similar hair color to the original color of the patient, a group of Swiss investigatorss added melanocytes isolated from skin biopsy to a culture of keratinocytes, achieving favorable results, both in patients with clear phototypes and with dark phototypes.<a class="elsevierStyleCrossRef" href="#bib0430"><span class="elsevierStyleSup">36</span></a></p><p id="par0100" class="elsevierStylePara elsevierViewall">A culture of keratinocytes on a bed of human fibroblasts embedded with a plasma matrix has been used as an alternative to transplantation of layers of keratinocytes cultured on a bed of irradiated fibroblasts.<a class="elsevierStyleCrossRef" href="#bib0435"><span class="elsevierStyleSup">37</span></a> This approach enables restoration of both the epidermal and dermal compartment. After 24-26 days of culture, the authors achieved a 1000-fold cultured-area expansion, and successfully transplanted artificial skin from 2 patients with severe burns. Researchers from the University of Granada in Spain used fibrin-agarose biomaterials as a base to generate skin substitutes from human fibroblasts and keratinocytes. The artificial skin obtained was transplanted to nude mice and samples were taken for histological analysis and electron microscopy after 10, 20, 30, and 40 days.<a class="elsevierStyleCrossRef" href="#bib0440"><span class="elsevierStyleSup">38</span></a> The results of these analyses showed that the structure of the skin obtained through tissue engineering was very similar to that of normal mouse skin.</p><p id="par0105" class="elsevierStylePara elsevierViewall">Two studies of murine models published recently pointed to a possible alternative to the method used traditionally. Stimulation of the stem cells from the bulge of the hair follicle in third-degree burns in mice induced with human α-defensin-5 derived from the intestine accelerated wound healing and, notably, induced hair regeneration.<a class="elsevierStyleCrossRef" href="#bib0445"><span class="elsevierStyleSup">39</span></a> Similarly, transplantation of Lgr6<span class="elsevierStyleSup">+</span> stem cells isolated by fluorescence-activated cell sorting and administered by injections into the wound promoted reepithelization, hair growth, and angiogenesis.<a class="elsevierStyleCrossRef" href="#bib0450"><span class="elsevierStyleSup">40</span></a></p></span><span id="sec0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0060">Therapeutic Correction of the Epidermal Stem Cell Genome in Genetic Diseases</span><p id="par0110" class="elsevierStylePara elsevierViewall">In recent years, the cost of genetic sequencing has decreased significantly. As a result, the volume of data on the human genome in different contexts and diseases has increased exponentially. These advances in knowledge have generated high expectations around the potential therapeutic applications in genetic diseases. Although gene therapy is not applied in everyday clinical practice by dermatologists, in recent years, large steps forward have been made and the field shows great promise.</p><p id="par0115" class="elsevierStylePara elsevierViewall">To date, the 2 most powerful therapeutic genetic techniques are gene therapy, which enables the reestablishment of the lost function of a given gene through expression of a transgene that is incorporated into the genome by viral vectors,<a class="elsevierStyleCrossRef" href="#bib0455"><span class="elsevierStyleSup">41</span></a> and interference RNA, which can suppress expression of the defective gene through inhibition of messenger RNA.<a class="elsevierStyleCrossRef" href="#bib0460"><span class="elsevierStyleSup">42</span></a> In recent years, moreover, new technologies have been developed with a promising future potential in gene therapy. These are based on the use of programmable nucleases, which are able to edit the genome of cells in damaged tissues, resulting in the elimination or correction of harmful mutations or the insertion of protective mutations.<a class="elsevierStyleCrossRefs" href="#bib0465"><span class="elsevierStyleSup">43–46</span></a></p><p id="par0120" class="elsevierStylePara elsevierViewall">From a theoretical point of view, there are 2 possibilities for the treatment of genetic skin diseases (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>). Ex vivo therapy consists of extracting epidermal stem cells with a genetic abnormality (such as for example, laminin 5 deficit<a class="elsevierStyleCrossRef" href="#bib0485"><span class="elsevierStyleSup">47</span></a> or collagen 7 deficit<a class="elsevierStyleCrossRef" href="#bib0490"><span class="elsevierStyleSup">48</span></a> in the case of patients with epidermolysis bullosa) by skin biopsy, correcting the mutation in vitro by gene transfer, selecting cells in which the transfer has been successfully accomplished and the defect has been corrected, and transplanting keratinocytes once again in the skin of the patient. In a recently published study, before transplanting the corrected epidermal stem cells back into patients with epidermolysis bullosa, the authors assessed the integrity of the genome and also the oncogenic potential of these cells.<a class="elsevierStyleCrossRefs" href="#bib0495"><span class="elsevierStyleSup">49,50</span></a> They demonstrated that the procedure is safe (given that this is a transfection using viral vectors, one of the main concerns and drawbacks is the possibility of mutagenesis). In vivo therapy consists of delivery of viral or programmable nuclease vectors directly to the affected cells in their natural environment through intravenous drug administration or injection into the organ itself. This approach has several technical difficulties and safety concerns, which we will not discuss in this review but which have impeded the use of these techniques in patients with genetic skin diseases.</p><elsevierMultimedia ident="fig0020"></elsevierMultimedia></span></span><span id="sec0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Conclusions and Perspectives</span><p id="par0125" class="elsevierStylePara elsevierViewall">The characteristics of stem cells, whereby they are able to self-renew and give rise to different cells types, along with the startling developments in bioengineering, make for a promising future. Epidermal stem cells are particularly attractive given their relatively high number proportional to the body surface and their accessibility. Although these are complex techniques with a high cost, it is likely that in the coming years, knowledge of the biology of stem cells, as well as the safety of the techniques used, will increase, and so allow a more widespread application in medicine and in dermatology in particular.</p></span><span id="sec0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Funding</span><p id="par0130" class="elsevierStylePara elsevierViewall">The work of I. Pastushenko was funded by the Télévie grant.</p></span><span id="sec0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Conflicts of Interest</span><p id="par0135" class="elsevierStylePara elsevierViewall">The authors declare that they have no conflicts of interest.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:15 [ 0 => array:3 [ "identificador" => "xres576312" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0005" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec592965" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres576311" "titulo" => "Resumen" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abst0010" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec592966" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Different Stem Cell Populations in the Epidermis" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Self-Renewal of Stem Cells" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "Role of Epidermal Stem Cells in Skin Homeostasis and Scarring" ] 8 => array:2 [ "identificador" => "sec0025" "titulo" => "Epidermal Stem Cells as the Origin of Nonmelanoma Skin Cancer Cells" ] 9 => array:3 [ "identificador" => "sec0030" "titulo" => "Potential Applications of Stem Cells in Clinical Dermatology" "secciones" => array:2 [ 0 => array:2 [ "identificador" => "sec0035" "titulo" => "Burns" ] 1 => array:2 [ "identificador" => "sec0040" "titulo" => "Therapeutic Correction of the Epidermal Stem Cell Genome in Genetic Diseases" ] ] ] 10 => array:2 [ "identificador" => "sec0045" "titulo" => "Conclusions and Perspectives" ] 11 => array:2 [ "identificador" => "sec0050" "titulo" => "Funding" ] 12 => array:2 [ "identificador" => "sec0055" "titulo" => "Conflicts of Interest" ] 13 => array:2 [ "identificador" => "xack194238" "titulo" => "Acknowledgments" ] 14 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2015-05-01" "fechaAceptado" => "2015-05-27" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec592965" "palabras" => array:5 [ 0 => "Adult stem cells" 1 => "Epidermal stem cells" 2 => "Review" 3 => "Dermatology" 4 => "Therapeutic applications" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec592966" "palabras" => array:5 [ 0 => "Células madre del adulto" 1 => "Células madre epidérmicas" 2 => "Revisión" 3 => "Dermatología" 4 => "Aplicaciones terapéuticas" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Stem cells are characterized by their ability to self-renew and differentiate into the different cell lineages of their tissue of origin. The discovery of stem cells in adult tissues, together with the description of specific markers for their isolation, has opened up new lines of investigation, expanding the horizons of biomedical research and raising new hope in the treatment of many diseases.</p><p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">In this article, we review in detail the main characteristics of the stem cells that produce the specialized cells of the skin (epidermal, mesenchymal, and melanocyte stem cells) and their potential implications and applications in diseases affecting the skin.</p><p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Part <span class="elsevierStyleSmallCaps">I</span> deals with the principal characteristics and potential applications of epidermal stem cells in dermatology.</p></span>" ] "es" => array:2 [ "titulo" => "Resumen" "resumen" => "<span id="abst0010" class="elsevierStyleSection elsevierViewall"><p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Las células madre son células que se caracterizan por su capacidad para autorrenovarse y diferenciarse hacia células de todos los linajes que constituyen su tejido de origen. El descubrimiento de las células madre en un organismo adulto, y la descripción de los marcadores que han permitido aislar de forma específica estas células, han abierto nuevas perspectivas y nuevos horizontes en la investigación biomédica y también nuevas esperanzas en el tratamiento de muchas enfermedades. En este artículo se revisan de forma detallada las principales características de las células madre que dan origen a las distintas células de la piel humana, incluyendo las células madre epidérmicas, mesenquimales y melanocíticas, y sus potenciales implicaciones y aplicaciones en las enfermedades cutáneas. La primera parte de este artículo revisa las células madre epidérmicas, con sus principales características y sus potenciales aplicaciones en dermatología.</p></span>" ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar0005">Please cite this article as: Pastushenko I, Prieto-Torres L, Gilaberte Y, Blanpain C. Células madre de la piel: en la frontera entre el laboratorio y la clínica. Parte <span class="elsevierStyleSmallCaps">I</span>: células madre epidérmicas. Actas Dermosifiliogr. 2015;106:725–732.</p>" ] ] "multimedia" => array:5 [ 0 => array:7 [ "identificador" => "fig0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1667 "Ancho" => 3278 "Tamanyo" => 669322 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Structure of the hair follicle and different types of epidermal stem cells.</p> <p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">The figure shows (A) microphotography of the hair follicle (hematoxylin and eosin, ×<span class="elsevierStyleHsp" style=""></span>20) and (B) illustration of the different types of stem cells and progenitor cells in the epidermis, as well as their specific markers. IFE indicates interfollicular dermis, SC, stem cells.</p>" ] ] 1 => array:7 [ "identificador" => "fig0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 1056 "Ancho" => 2278 "Tamanyo" => 232985 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Self-renewal of stem cells.</p> <p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">A) Concept of symmetric and asymmetric cell division.</p> <p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">During the development of the embryo (B), most of the divisions are symmetric and the axis of division is parallel to the basal membrane, thereby allowing extension of the embryo surface during growth. During stratification of the epithelium, which occurs during morphogenesis and in adulthood (C), most of the divisions are asymmetric. During asymmetric division, the axis can be perpendicular to the basal membrane (on division, a daughter cell on losing contact with integrins and growth factor secreted by the basal membrane, undergoes differentiation, and the second daughter cell, on remaining in contact with the basal membrane, maintains the characteristics of the stem cell). Division can also be parallel to the basal membrane (in this case, differentiation of one of the daughter cells is induced by another mechanism).</p>" ] ] 2 => array:7 [ "identificador" => "fig0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 965 "Ancho" => 3090 "Tamanyo" => 233513 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Concept of lineage tracing.</p> <p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">The figure shows a schematic of the information obtained from lineage tracing experiments. The technique consists of introducing a reporter gene associated with the marker of the cells of interest (A), thereby obtaining a fluorescent signal in the subgroup of cells of interest. All daughter cells of the labelled cells also have a fluorescent signal (B), but the intensity of the signal will decrease as the cells continue to divide. Thus, on the one hand, we can identify cells descended from the initially labelled cells, and on the other, assess the rate of division (the cells that maintain an intense signal over time will be the quiescent cells that divide very slowly—the stem cells—whereas the cells that lose color intensity will be the compromised progenitor cells [C]).</p>" ] ] 3 => array:7 [ "identificador" => "fig0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 2173 "Ancho" => 1625 "Tamanyo" => 279144 ] ] "descripcion" => array:1 [ "en" => "<p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">Example of application of gene therapy in a skin disease.</p> <p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">The figure shows a schematic of a the study conducted by Droz-Georget Lathion et al. in epidermolysis bullosa, as an example of the efficacy and safety of gene therapy in a skin disease.</p>" ] ] 4 => array:7 [ "identificador" => "tbl0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:2 [ "leyenda" => "<p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">Abbreviation: SC, cell.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Marker \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Full Name \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Cells that Express the Marker \t\t\t\t\t\t\n \t\t\t\t</th><th class="td" title="table-head " align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Expression Pattern \t\t\t\t\t\t\n \t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">α6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Integrin α6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">SC of interfollicular epidermis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Membrane \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Axin2 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Axin-like protein \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Progenitors of the interfollicular epidermis? \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Cytoplasmic \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">CD34 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">CD34 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Bulge SC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Membrane \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Inv \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Involucrin \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Progenitors of the interfollicular epidermis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Cytoplasmic \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">K5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Keratin 5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">SC of interfollicular epidermis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Cytoplasmic \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">K14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Keratin 14 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">SC and progenitors of the interfollicular epidermis \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Cytoplasmic \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">K15 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Keratin 15 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Bulge SC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Cytoplasmic \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Lgr5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Leucine-rich repeat-containing G-protein-coupled receptor 5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Bulge SC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Cytoplasmic \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Lgr6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Leucine-rich repeat-containing G-protein-coupled receptor 6 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Isthmus SC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Cytoplasmic/membrane \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">Lrig5 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Leucine-rich repeats and immunoglobulin-like domain protein 1 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Infundibulum SC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Cytoplasmic \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="table-entry " align="left" valign="top">MTS24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">MTS24 \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Isthmus SC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="table-entry " align="left" valign="top">Membrane \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab940627.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">Summary of the Main Characteristics of Markers for Epidermal Stem Cells of Different Compartments.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:50 [ 0 => array:3 [ "identificador" => "bib0255" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "C. Blanpain" 1 => "W.E. Lowry" 2 => "A. Geoghegan" 3 => "L. Polak" 4 => "E. Fuchs" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cell.2004.08.012" "Revista" => array:6 [ "tituloSerie" => "Cell" "fecha" => "2004" "volumen" => "118" "paginaInicial" => "635" "paginaFinal" => "648" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15339667" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0260" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "I.L. Weissman" 1 => "D.J. Anderson" 2 => "F. Gage" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1146/annurev.cellbio.17.1.387" "Revista" => array:6 [ "tituloSerie" => "Annu Rev Cell Dev Biol" "fecha" => "2001" "volumen" => "17" "paginaInicial" => "387" "paginaFinal" => "403" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11687494" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0265" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Distinct contribution of stem and progenitor cells to epidermal maintenance" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "G. Macré" 1 => "S. Dekoninck" 2 => "B. Drogat" 3 => "K.K. Youssef" 4 => "S. Broheé" 5 => "P.A. Sotiropoulou" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature11393" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2012" "volumen" => "489" "paginaInicial" => "257" "paginaFinal" => "262" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22940863" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0270" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Interfollicular epidermal stem cells self-renew via autocrine Wnt signalling" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "X. Lim" 1 => "S.H. Tan" 2 => "W.L. Koh" 3 => "R.M. Chau" 4 => "K.S. Yan" 5 => "C.J. Kuo" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1239730" "Revista" => array:6 [ "tituloSerie" => "Science" "fecha" => "2013" "volumen" => "342" "paginaInicial" => "1226" "paginaFinal" => "1230" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24311688" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0275" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Morphogenesis and renewal of hair follicles from adult multipotent stem cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "H. Oshima" 1 => "A. Rochat" 2 => "C. Kedzia" 3 => "K. Kobayashi" 4 => "Y. Barrandon" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Cell" "fecha" => "2001" "volumen" => "104" "paginaInicial" => "233" "paginaFinal" => "245" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11207364" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0280" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epidermal homeostasis: A balancing act of stem cells in the skin" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C. Blanpain" 1 => "E. Fuchs" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrm2636" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Mol Cell Biol" "fecha" => "2009" "volumen" => "10" "paginaInicial" => "207" "paginaFinal" => "217" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19209183" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0285" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The secret life of the hair follicle" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M.H. Hardy" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Trends Genet" "fecha" => "1992" "volumen" => "8" "paginaInicial" => "55" "paginaFinal" => "61" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/1566372" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0290" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A dermal niche for multipotent adult skin-derived precursor cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K.J. Fernandes" 1 => "I.A. McKenzie" 2 => "P. Mill" 3 => "K.M. Smith" 4 => "M. Akhavan" 5 => "F. Barnabé-Heider" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ncb1181" "Revista" => array:6 [ "tituloSerie" => "Nat Cell Biol" "fecha" => "2004" "volumen" => "6" "paginaInicial" => "1082" "paginaFinal" => "1093" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15517002" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0295" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D.P. Hunt" 1 => "P.N. Morris" 2 => "J. Sterling" 3 => "J.A. Anderson" 4 => "A. Joannides" 5 => "C. Jahonda" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1634/stemcells.2007-0281" "Revista" => array:6 [ "tituloSerie" => "Stem Cells" "fecha" => "2008" "volumen" => "26" "paginaInicial" => "163" "paginaFinal" => "172" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17901404" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0300" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hair follicle dermal stem cells regenerate the dermal sheath, repopulate the dermal papilla, and modulate hair type" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "W. Rahmani" 1 => "S. Abbasi" 2 => "A. Hagner" 3 => "E. Raharjo" 4 => "R. Kumar" 5 => "A. Hotta" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.devcel.2014.10.022" "Revista" => array:6 [ "tituloSerie" => "Dev Cell" "fecha" => "2014" "volumen" => "31" "paginaInicial" => "543" "paginaFinal" => "558" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25465495" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0305" "etiqueta" => "11" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Blimp 1 defines a progenitor population that governs cellular input to the sebaceous gland" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "V. Horsley" 1 => "D. O¿Carroll" 2 => "R. Tooze" 3 => "Y. Ohinata" 4 => "M. Saitou" 5 => "T. Obukhanych" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cell.2006.06.048" "Revista" => array:6 [ "tituloSerie" => "Cell" "fecha" => "2006" "volumen" => "126" "paginaInicial" => "597" "paginaFinal" => "609" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16901790" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0310" "etiqueta" => "12" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.G. Nijhof" 1 => "K.M. Braun" 2 => "A. Giangreco" 3 => "C. van Pelt" 4 => "H. Kawamoto" 5 => "R.L. Boyd" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1242/dev.02443" "Revista" => array:6 [ "tituloSerie" => "Development" "fecha" => "2006" "volumen" => "133" "paginaInicial" => "3027" "paginaFinal" => "3037" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16818453" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0315" "etiqueta" => "13" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "U.B. Jensen" 1 => "X. Yan" 2 => "C. Triel" 3 => "S.H. Woo" 4 => "R. Christensen" 5 => "D.M. Owens" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1242/jcs.025502" "Revista" => array:6 [ "tituloSerie" => "J Cell Sci" "fecha" => "2008" "volumen" => "121" "paginaInicial" => "609" "paginaFinal" => "617" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18252795" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0320" "etiqueta" => "14" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Lrig 1 expression defines a distinct multipotent stem cell population in mammalian epidermis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K.B. Jensen" 1 => "C.A. Collins" 2 => "E. Nascimento" 3 => "D.W. Tan" 4 => "M. Frye" 5 => "S. Itami" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:4 [ "tituloSerie" => "Cell Stem Cell" "fecha" => "2009" "volumen" => "4" "paginaInicial" => "439" ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0325" "etiqueta" => "15" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mechanisms regulating epidermal stem cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "B. Beck" 1 => "C. Blanpain" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/emboj.2012.67" "Revista" => array:6 [ "tituloSerie" => "EMBO J" "fecha" => "2012" "volumen" => "31" "paginaInicial" => "2067" "paginaFinal" => "2075" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22433839" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0330" "etiqueta" => "16" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "C.P. Lu" 1 => "L. Polak" 2 => "A.S. Rocha" 3 => "H.A. Pasolli" 4 => "S.C. Chen" 5 => "N. Sharma" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cell.2012.04.045" "Revista" => array:6 [ "tituloSerie" => "Cell" "fecha" => "2012" "volumen" => "150" "paginaInicial" => "136" "paginaFinal" => "150" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22770217" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0335" "etiqueta" => "17" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Asymmetric cell divisions promote stratification and differentiation of mammalian skin" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "T. Lechler" 1 => "E. Fuchs" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature03922" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2005" "volumen" => "437" "paginaInicial" => "275" "paginaFinal" => "280" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16094321" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0340" "etiqueta" => "18" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "C. Blanpain" 1 => "E. Fuchs" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1242281" "Revista" => array:5 [ "tituloSerie" => "Science" "fecha" => "2014" "volumen" => "344" "paginaInicial" => "1242281" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24926024" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0345" "etiqueta" => "19" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Defining the epithelial stem cell niche in skin" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "T. Tumbar" 1 => "G. Guasch" 2 => "V. Greco" 3 => "C. Blanpain" 4 => "W.E. Lowry" 5 => "M. Rendl" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1092436" "Revista" => array:6 [ "tituloSerie" => "Science" "fecha" => "2004" "volumen" => "303" "paginaInicial" => "359" "paginaFinal" => "363" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14671312" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0350" "etiqueta" => "20" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The epidermis comprises autonomous compartments maintained by distinct stem cell populations" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "M.E. Page" 1 => "P. Lombard" 2 => "F. Ng" 3 => "B. Göttgens" 4 => "K.B. Jensen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.stem.2013.07.010" "Revista" => array:6 [ "tituloSerie" => "Cell Stem Cell" "fecha" => "2013" "volumen" => "13" "paginaInicial" => "471" "paginaFinal" => "482" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23954751" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0355" "etiqueta" => "21" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epidermal stem cells arise from the hair follicle after wounding" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "V. Levy" 1 => "C. Lindon" 2 => "Y. Zheng" 3 => "B.D. Harfe" 4 => "B.A. Morgan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1096/fj.06-6926com" "Revista" => array:6 [ "tituloSerie" => "FASEB J" "fecha" => "2007" "volumen" => "21" "paginaInicial" => "1358" "paginaFinal" => "1366" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17255473" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0360" "etiqueta" => "22" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "P. Rompolas" 1 => "E.R. Deschene" 2 => "G. Zito" 3 => "D.G. Gonzalez" 4 => "I. Saotome" 5 => "A.M. Haberman" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature11218" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2012" "volumen" => "487" "paginaInicial" => "496" "paginaFinal" => "499" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22763436" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0365" "etiqueta" => "23" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Spatial organization within a niche as a determinant of stem-cell fate" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "K.R. Rompolas Mesa" 1 => "V. Greco" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nature12602" "Revista" => array:6 [ "tituloSerie" => "Nature" "fecha" => "2013" "volumen" => "502" "paginaInicial" => "513" "paginaFinal" => "518" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24097351" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0370" "etiqueta" => "24" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cells of origin in skin cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.C. Becker" 1 => "A. zur Hausen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/jid.2014.233" "Revista" => array:6 [ "tituloSerie" => "J Invest Dermatol" "fecha" => "2014" "volumen" => "134" "paginaInicial" => "2491" "paginaFinal" => "2493" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25219650" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0375" "etiqueta" => "25" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Applying the principles of stem-cell biology to cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R. Pardal" 1 => "M.F. Clarke" 2 => "S.J. Morrison" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Nature Rev Cancer" "fecha" => "2003" "volumen" => "3" "paginaInicial" => "895" "paginaFinal" => "902" ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0380" "etiqueta" => "26" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Stem cells and cancer: Two faces of Eve" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "M.F. Clake" 1 => "M. Fuller" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cell.2006.03.011" "Revista" => array:6 [ "tituloSerie" => "Cell" "fecha" => "2006" "volumen" => "124" "paginaInicial" => "1111" "paginaFinal" => "1115" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16564000" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0385" "etiqueta" => "27" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identification of the cell lineage at the origin of basal cell carcinoma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K.K. Youssef" 1 => "A. Van Keymeulen" 2 => "G. Lapouge" 3 => "B. Beck" 4 => "C. Michaux" 5 => "Y. Achouri" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ncb2031" "Revista" => array:6 [ "tituloSerie" => "Nat Cell Biol" "fecha" => "2010" "volumen" => "12" "paginaInicial" => "299" "paginaFinal" => "305" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20154679" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0390" "etiqueta" => "28" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Adult interfollicular tumor-initiating cells are reprogrammed into an embryonic hair follicle progenitor-like fate during basal cell carcinoma initiation" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "K.K. Youssef" 1 => "G. Lapouge" 2 => "K. Bouvrée" 3 => "S. Rorive" 4 => "S. Brohée" 5 => "O. Appelstein" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ncb2628" "Revista" => array:6 [ "tituloSerie" => "Nat Cell Biol" "fecha" => "2012" "volumen" => "14" "paginaInicial" => "1282" "paginaFinal" => "1294" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23178882" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0395" "etiqueta" => "29" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identifying the cellular origin of squamous cell carcinoma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "G. Lapouge" 1 => "K.K. Youssef" 2 => "B. Vokaer" 3 => "Y. Achouri" 4 => "C. Michaux" 5 => "P.A. Sotiropoulou" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1073/pnas.1012720108" "Revista" => array:6 [ "tituloSerie" => "Proc Natl Acad Sci USA" "fecha" => "2011" "volumen" => "108" "paginaInicial" => "7431" "paginaFinal" => "7436" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21502497" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0400" "etiqueta" => "30" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Medical applications of epidermal stem cells. StemBook (Internet)" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "G. Lapouge" 1 => "C. Blanpain" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2008" "editorial" => "Harvard Stem Cell Institute" "editorialLocalizacion" => "Cambridge (MA)" ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0405" "etiqueta" => "31" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "V. Ronfard" 1 => "J.M. Rives" 2 => "Y. Neveux" 3 => "H. Carsin" 4 => "Y. Barrandon" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Transplantation" "fecha" => "2000" "volumen" => "70" "paginaInicial" => "1588" "paginaFinal" => "1598" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/11152220" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0410" "etiqueta" => "32" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Growth of cultured human epidermal cells into multiple epithelia suitable for grafting" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "H. Green" 1 => "O. Kehinde" 2 => "J. Thomas" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Proc Natl Acad USA" "fecha" => "1979" "volumen" => "76" "paginaInicial" => "5665" "paginaFinal" => "5668" ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0415" "etiqueta" => "33" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tissue engineering for cutaneous wounds" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "R.A. Clark" 1 => "K. Ghosh" 2 => "M.G. Tonnesen" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/sj.jid.5700715" "Revista" => array:6 [ "tituloSerie" => "J Invest Dermatol" "fecha" => "2007" "volumen" => "127" "paginaInicial" => "1018" "paginaFinal" => "1029" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17435787" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0420" "etiqueta" => "34" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "M. Rendl" 1 => "L. Polak" 2 => "E. Fuchs" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1101/gad.1614408" "Revista" => array:6 [ "tituloSerie" => "Genes Dev" "fecha" => "2008" "volumen" => "22" "paginaInicial" => "543" "paginaFinal" => "557" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18281466" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0425" "etiqueta" => "35" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Dissociated human dermal papilla cells induce hair follicle neogenesis in grafted dermal-epidermal composites" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "R.L. Thangapazham" 1 => "P. Klover" 2 => "J.A. Wang" 3 => "Y. Zheng" 4 => "A. Devine" 5 => "S. Li" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/jid.2013.337" "Revista" => array:6 [ "tituloSerie" => "J Invest Dermatol" "fecha" => "2014" "volumen" => "134" "paginaInicial" => "538" "paginaFinal" => "540" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23924901" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0430" "etiqueta" => "36" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Trooping the color: Restoring the original donor skin color by addition of melanocytes to bioengineered skin analogs" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Bottcher-Haberzeth" 1 => "A.S. Klar" 2 => "T. Biedermann" 3 => "C. Schiestl" 4 => "C. Meuli-Simmen" 5 => "E. Reichmann" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s00383-012-3217-0" "Revista" => array:6 [ "tituloSerie" => "Pediatr Surg Int" "fecha" => "2013" "volumen" => "29" "paginaInicial" => "239" "paginaFinal" => "247" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23196807" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0435" "etiqueta" => "37" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S.G. Llames" 1 => "M. del Rio" 2 => "F. Larcher" 3 => "E. García" 4 => "M. García" 5 => "M.J. Escamez" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/01.TP.0000112381.80964.85" "Revista" => array:6 [ "tituloSerie" => "Transplantation" "fecha" => "2004" "volumen" => "77" "paginaInicial" => "350" "paginaFinal" => "355" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14966407" "web" => "Medline" ] ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0440" "etiqueta" => "38" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epithelial and stromal development patterns in novel substitute of the human skin generated with fibrin-agarose biomaterials" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "V. Carriel" 1 => "I. Garzón" 2 => "J.M. Jiménez" 3 => "A.C. Oliviera" 4 => "S. Arias-Santiago" 5 => "A. Campos" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1159/000330682" "Revista" => array:6 [ "tituloSerie" => "Cells Tissues Organs" "fecha" => "2012" "volumen" => "196" "paginaInicial" => "1" "paginaFinal" => "12" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22146480" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0445" "etiqueta" => "39" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Stimulation of the follicular bulge Lgr5+ and Lgr6+ stem cells with the gut-derived human alpha defensin 5 results in decreased bacterial presence, enhanced wound healing, and hair growth form tissues devoid of adnexal structures" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D. Lough" 1 => "H. Dai" 2 => "M. Yang" 3 => "J. Reichensperger" 4 => "L. Cox" 5 => "C. Harrison" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1097/PRS.0b013e3182a48af6" "Revista" => array:6 [ "tituloSerie" => "Plast Reconstr Surg" "fecha" => "2013" "volumen" => "132" "paginaInicial" => "1159" "paginaFinal" => "1171" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24165598" "web" => "Medline" ] ] ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0450" "etiqueta" => "40" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transplantation of the Lgr6+ epithelial stem cell into full-thickness cutaneous wound results in enhanced healing, nascent hair follicle development, and augmentation of angiogenic analytes" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "D.M. Lough" 1 => "M. Yang" 2 => "A. Blum" 3 => "J.D. Reichensperger" 4 => "N.M. Cosenza" 5 => "N. Wetter" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Plast Reconstr Surg" "fecha" => "2014" "volumen" => "133" "paginaInicial" => "576" "paginaFinal" => "590" ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0455" "etiqueta" => "41" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Therapeutic genome editing: Prospects and challenges" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "D.B. Cox" 1 => "R.J. Platt" 2 => "F. Zhang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nm.3793" "Revista" => array:6 [ "tituloSerie" => "Nat Med" "fecha" => "2015" "volumen" => "21" "paginaInicial" => "121" "paginaFinal" => "131" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25654603" "web" => "Medline" ] ] ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0460" "etiqueta" => "42" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "State-of-the-art gene-based therapies: the road ahead" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M.A. Kay" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrg2971" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Genet" "fecha" => "2011" "volumen" => "12" "paginaInicial" => "316" "paginaFinal" => "389" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21468099" "web" => "Medline" ] ] ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0465" "etiqueta" => "43" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Homing endonucleases: From microbial genetic invaders to reagents for targeted DNA modifications" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "B.L. Stoddard" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Structure" "fecha" => "2011" "volumen" => "19" "paginaInicial" => "5" "paginaFinal" => "7" ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0470" "etiqueta" => "44" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genome editing with engineered zinc-finger nucleases" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "F.D. Urnov" 1 => "E.J. Rebar" 2 => "M.C. Holmes" 3 => "H.S. Zhang" 4 => "P.D. Gregory" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrg2842" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Genet" "fecha" => "2010" "volumen" => "11" "paginaInicial" => "636" "paginaFinal" => "646" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20717154" "web" => "Medline" ] ] ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0475" "etiqueta" => "45" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "TAL effectors: Customizable proteins for DNA targeting" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "A.J. Bogdanove" 1 => "D.F. Voytas" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1204094" "Revista" => array:6 [ "tituloSerie" => "Science" "fecha" => "2011" "volumen" => "333" "paginaInicial" => "1843" "paginaFinal" => "1846" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21960622" "web" => "Medline" ] ] ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0480" "etiqueta" => "46" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Genome editing. The new frontier of genome engineering with CRISPR-Cas9" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.A. Doudna" 1 => "E. Charpentier" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1126/science.1258096" "Revista" => array:5 [ "tituloSerie" => "Science" "fecha" => "2014" "volumen" => "346" "paginaInicial" => "1258096" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25430774" "web" => "Medline" ] ] ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0485" "etiqueta" => "47" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "F. Mavilio" 1 => "G. Pellegrini" 2 => "S. Ferrari" 3 => "F. di Nunzio" 4 => "E. di Iorio" 5 => "A. Recchia" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nm1504" "Revista" => array:7 [ "tituloSerie" => "Nat Med" "fecha" => "2006" "volumen" => "12" "paginaInicial" => "1397" "paginaFinal" => "1402" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17115047" "web" => "Medline" ] ] "itemHostRev" => array:3 [ "pii" => "S0954611112001904" "estado" => "S300" "issn" => "09546111" ] ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0490" "etiqueta" => "48" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Innovative therapeutic strategies for recessive dystrophic edipermolysis bullosa" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "F. Larcher" 1 => "M. del Río" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ad.2015.01.007" "Revista" => array:6 [ "tituloSerie" => "Actas Dermosifiliogr" "fecha" => "2015" "volumen" => "106" "paginaInicial" => "376" "paginaFinal" => "382" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25796272" "web" => "Medline" ] ] ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0495" "etiqueta" => "49" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A single epidermal stem cell strategy for safe ex vivo gene therapy" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "S. Droz-Georget Lathion" 1 => "A. Rochat" 2 => "G. Knott" 3 => "A. Recchia" 4 => "D. Martinet" 5 => "S. Benmohammed" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.15252/emmm.201404353" "Revista" => array:6 [ "tituloSerie" => "EMBO Mol Med" "fecha" => "2015" "volumen" => "7" "paginaInicial" => "380" "paginaFinal" => "393" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25724200" "web" => "Medline" ] ] ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0500" "etiqueta" => "50" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Single stem cell gene therapy for genetic skin disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "J.C. Larsimont" 1 => "C. Blanpain" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.15252/emmm.201404859" "Revista" => array:6 [ "tituloSerie" => "EMBO Mol Med" "fecha" => "2015" "volumen" => "7" "paginaInicial" => "366" "paginaFinal" => "367" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25724199" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:4 [ "identificador" => "xack194238" "titulo" => "Acknowledgments" "texto" => "<p id="par0140" class="elsevierStylePara elsevierViewall">The authors of this review would like to thank Kostiantyn Kokoriev (Kiev, Ukraine) for producing the schematics and Jesús Vera (Pathology Department, Hospital San Jorge, Huesca, Spain) for the histopathological image of the hair follicle.</p>" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/15782190/0000010600000009/v1_201511040157/S1578219015002450/v1_201511040157/en/main.assets" "Apartado" => array:4 [ "identificador" => "6177" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Reviews" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/15782190/0000010600000009/v1_201511040157/S1578219015002450/v1_201511040157/en/main.pdf?idApp=UINPBA000044&text.app=https://actasdermo.org/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1578219015002450?idApp=UINPBA000044" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 13 | 10 | 23 |
2024 October | 103 | 33 | 136 |
2024 September | 123 | 22 | 145 |
2024 August | 159 | 58 | 217 |
2024 July | 108 | 35 | 143 |
2024 June | 146 | 68 | 214 |
2024 May | 127 | 53 | 180 |
2024 April | 121 | 22 | 143 |
2024 March | 115 | 39 | 154 |
2024 February | 133 | 45 | 178 |
2024 January | 155 | 57 | 212 |
2023 December | 153 | 34 | 187 |
2023 November | 113 | 40 | 153 |
2023 October | 139 | 45 | 184 |
2023 September | 166 | 50 | 216 |
2023 August | 129 | 30 | 159 |
2023 July | 133 | 40 | 173 |
2023 June | 110 | 35 | 145 |
2023 May | 127 | 31 | 158 |
2023 April | 95 | 29 | 124 |
2023 March | 114 | 28 | 142 |
2023 February | 121 | 34 | 155 |
2023 January | 119 | 54 | 173 |
2022 December | 105 | 69 | 174 |
2022 November | 90 | 29 | 119 |
2022 October | 35 | 29 | 64 |
2022 September | 55 | 52 | 107 |
2022 August | 70 | 42 | 112 |
2022 July | 60 | 51 | 111 |
2022 June | 68 | 32 | 100 |
2022 May | 131 | 58 | 189 |
2022 April | 153 | 69 | 222 |
2022 March | 132 | 68 | 200 |
2022 February | 128 | 57 | 185 |
2022 January | 142 | 75 | 217 |
2021 December | 98 | 63 | 161 |
2021 November | 97 | 64 | 161 |
2021 October | 130 | 57 | 187 |
2021 September | 103 | 50 | 153 |
2021 August | 128 | 40 | 168 |
2021 July | 147 | 51 | 198 |
2021 June | 116 | 47 | 163 |
2021 May | 88 | 43 | 131 |
2021 April | 156 | 65 | 221 |
2021 March | 133 | 25 | 158 |
2021 February | 110 | 40 | 150 |
2021 January | 53 | 32 | 85 |
2020 December | 69 | 27 | 96 |
2020 November | 53 | 23 | 76 |
2020 October | 39 | 11 | 50 |
2020 September | 82 | 45 | 127 |
2020 August | 52 | 37 | 89 |
2020 July | 37 | 24 | 61 |
2020 June | 42 | 29 | 71 |
2020 May | 32 | 15 | 47 |
2020 April | 34 | 19 | 53 |
2020 March | 29 | 26 | 55 |
2020 February | 6 | 0 | 6 |
2020 January | 0 | 2 | 2 |
2019 December | 5 | 7 | 12 |
2019 November | 0 | 6 | 6 |
2019 October | 0 | 1 | 1 |
2019 September | 4 | 3 | 7 |
2019 August | 2 | 1 | 3 |
2019 July | 0 | 10 | 10 |
2019 June | 2 | 2 | 4 |
2019 May | 1 | 7 | 8 |
2019 April | 0 | 5 | 5 |
2019 March | 4 | 5 | 9 |
2019 February | 6 | 1 | 7 |
2019 January | 5 | 0 | 5 |
2018 December | 3 | 0 | 3 |
2018 November | 7 | 1 | 8 |
2018 October | 1 | 3 | 4 |
2018 September | 6 | 0 | 6 |
2018 June | 0 | 1 | 1 |
2018 May | 0 | 6 | 6 |
2018 March | 1 | 1 | 2 |
2018 February | 27 | 10 | 37 |
2018 January | 42 | 10 | 52 |
2017 December | 46 | 11 | 57 |
2017 November | 38 | 19 | 57 |
2017 October | 40 | 18 | 58 |
2017 September | 28 | 23 | 51 |
2017 August | 37 | 32 | 69 |
2017 July | 29 | 34 | 63 |
2017 June | 44 | 64 | 108 |
2017 May | 24 | 11 | 35 |
2017 April | 31 | 21 | 52 |
2017 March | 21 | 18 | 39 |
2017 February | 21 | 13 | 34 |
2017 January | 28 | 8 | 36 |
2016 December | 27 | 21 | 48 |
2016 November | 40 | 21 | 61 |
2016 October | 24 | 17 | 41 |
2016 September | 0 | 5 | 5 |
2016 August | 0 | 5 | 5 |
2016 July | 4 | 3 | 7 |
2016 June | 1 | 14 | 15 |
2016 May | 2 | 9 | 11 |
2016 April | 0 | 12 | 12 |
2016 March | 0 | 6 | 6 |
2016 February | 0 | 16 | 16 |
2016 January | 0 | 5 | 5 |
2015 December | 0 | 34 | 34 |
2015 November | 0 | 18 | 18 |