Información de la revista
Vol. 100. Núm. S1.
Mirando hacia el futuro en Dermatología Extraordinario del Centenario. Parte I
Páginas 52-65 (Noviembre 2009)
Compartir
Compartir
Descargar PDF
English PDF
Más opciones de artículo
Vol. 100. Núm. S1.
Mirando hacia el futuro en Dermatología Extraordinario del Centenario. Parte I
Páginas 52-65 (Noviembre 2009)
Acceso a texto completo
Novedades en biología molecular y su aplicación en el diagnóstico y el tratamiento del melanoma
Advances in molecular biology and their application in the diagnosis and treatment of melanoma
Visitas
4136
A. Martorell-Calatayuda, C. Requenaa, R. Botella-Estradaa, O.P. Sangüezab,c,
Autor para correspondencia
osanguez@wfubmc.edu

Correspondencia: Omar P. Sangüeza. Department of Pahtology. Wake Forest University School of Medicine. Medical Center Boulevard. Winston Salem NC 37104-1072.
a Departamento de Dermatología. Instituto Valenciano de Oncologia. Valencia. España
b Departamento de Patología. Wake Forest University School of Medicine. Winston-Salem. North Carolina. Estados Unidos de Norteamérica
c Departamento de Dermatología. Wake Forest University School of Medicine. Winston-Salem. North Carolina. Estados Unidos de Norteamérica
Este artículo ha recibido
Información del artículo
Resumen

El melanoma (MM) es la primera causa de muerte por cáncer cutáneo, pese a que sólo representa un 4% dentro del conjunto de las neoplasias cutáneas.

El mecanismo patogénico implicado en el desarrollo del melanoma no se conoce bien en la actualidad. Sin embargo, es indudable la existencia de una interacción de factores ambientales y genéticos.

El desarrollo de la biología molecular en el campo de la Medicina ha mostrado un crecimiento exponencial en los últimos años. En el área de la Dermatología su aplicación al estudio del MM ha supuesto importantes avances en cuanto al conocimiento de las principales vías moleculares implicadas en su desarrollo. Estos hallazgos no sólo permiten un mejor conocimiento en cuanto a la patogenia de la enfermedad, sino que además tienen una utilidad práctica. Por una parte, la caracterización molecular del MM puede ser de gran ayuda en el diagnóstico diferencial entre lesiones melanocíticas benignas y malignas, en las que los criterios histopatológicos resultan insuficientes, como ocurre en el caso del nevus de Spitz y del melanoma spitzoide. Por otro lado, el conocimiento de las vías moleculares alteradas en las diversas lesiones melanocíticas malignas establece nuevas dianas terapéuticas en el manejo de los melanomas con diseminación a distancia, en los que el tratamiento quimioterápico utilizado en la actualidad ha fracasado en su objetivo de alargar la esperanza de vida.

Actualmente el empleo de estas técnicas en el campo dermatológico tiene principalmente la limitación de la disponibilidad, ya que su uso en muchos casos se restringe a trabajos de investigación, de manera que no están accesibles en la mayoría de los hospitales. Sin embargo, este problema probablemente se solventará en el momento en el que se estandaricen los patrones moleculares que permitan establecer una caracterización pronóstica y terapéutica de esta importante entidad.

Palabras clave:
melanoma
cáncer cutáneo
biología molecular
pronóstico
tratamiento
fisiopatología
Abstract

Even though malignant melanoma accounts for 4% of all skin cancers, it is the type responsible for most deaths.

The pathogenesis of melanoma is currently not well understood, although an interaction of environmental and genetic factors doubtlessly plays a role.

Molecular biology in medicine has progressed increasingly rapidly in recent years. In dermatology, application of molecular biology techniques to the study of malignant melanoma has led to important advances in our knowledge of the main molecular pathways implicated in its development. These findings not only can improve our knowledge of the pathogenesis of the disease but may also have practical implications. Thus, molecular characterization of malignant melanoma may be of great help in differentiating between benign and malignant melanocytic lesions when histopathological features prove insufficient as is the case, for example, in Spitz nevus and spitzoid melanoma. In addition, knowledge of the abnormal molecular pathways in different malignant melanoma lesions can point to new therapeutic targets for treating patients with melanomas with distant metastases, in whom current chemotherapy has failed to extend life expectancy.

At present, lack of availability is the main barrier to use of these techniques in dermatology—they are often limited to research, so not generally available in most hospitals. This problem will, however, be overcome when the molecular patterns become standardized, allowing a prognostic and therapeutic characterization of this important disease.

Key words:
melanoma
skin cancer
molecular biology
prognosis
treatment
pathophysiology
El Texto completo está disponible en PDF
Bibliografía
[1.]
W.H. Clark Jr, D.E. Elder, D. Guerry IV, M.N. Epstein, M.H. Greene, M.A. Van Horn.
Study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma.
Hum Pathol, 15 (1984), pp. 1147-1165
[2.]
M. Takata, Y. Goto, N. Ichii, M. Yamaura, H. Murata, H. Koga, et al.
Constitutive activation of the mitogen-activated protein kinase signaling pathway in acral melanomas.
J Invest Dermatol, 125 (2005), pp. 318-322
[3.]
L. Zhuang, C.S. Lee, R.A. Scolyer, S.W. McCarthy, A.A. Palmer, X.D. Zhang, et al.
Activation of the extracellular signal regulated kinase (ERK) pathway in human melanoma.
J Clin Pathol, 58 (2005), pp. 1163-1169
[4.]
Y. Chudnovsky, A.E. Adams, P.B. Robbins, Q. Lin, P.A. Khavari.
Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.
Nat Genet, 37 (2005), pp. 745-749
[5.]
K.P. Hoeflich, D.C. Gray, M.T. Eby, J.Y. Tien, L. Wong, J. Bower, et al.
Oncogenic BRAF is required for tumor growth and maintenance in melanoma models.
Cancer Res, 66 (2006), pp. 999-1006
[6.]
M. Libra, G. Malaponte, P.M. Navolanic, P. Gangemi, V. Bevelacqua, Proietti., et al.
Analysis of BRAF mutation in primary and metastatic melanoma.
Cell Cycle, 4 (2005), pp. 1382-1384
[7.]
J.L. Maldonado, J. Fridlyand, H. Patel, A.N. Jain, K. Busam, T. Kageshita, et al.
Determinants of BRAF mutations in primary melanomas.
J Natl Cancer Inst, 95 (2003), pp. 1878-1890
[8.]
P.M. Pollock, U.L. Harper, K.S. Hansen, L.M. Yudt, M. Stark, C.M. Robbins, et al.
High frequency of BRAF mutations in nevi.
Nat Genet, 33 (2003), pp. 19-20
[9.]
P. Uribe, I.I. Wistuba, S. González.
BRAF mutation: A frequent event in benign, atypical, and malignant melanocytic lesions of the skin.
Am J Dermatopathol, 25 (2003), pp. 365-370
[10.]
M. Daniotti, M. Oggionni, T. Ranzani, V. Vallacchi, V. Campi, D. Di Stasi, et al.
BRAF alterations are associated with complex mutational profiles in malignant melanoma.
Oncogene, 23 (2004), pp. 5968-5977
[11.]
R. Kumar, S. Angelini, E. Snellman, K. Hemminki.
BRAF mutations are common somatic events in melanocytic nevi.
J Invest Dermatol, 122 (2004), pp. 342-348
[12.]
M. Shinozaki, A. Fujimoto, D.L. Morton, D.S. Hoon.
Incidence of BRAF oncogene mutation and clinical relevance for primary cutaneous melanomas.
Clin Cancer Res, 10 (2004), pp. 1753-1757
[13.]
M.J. Garnett, R. Marais.
Guilty as charged: B-RAF is a human oncogene.
Cancer Cell, 6 (2004), pp. 313-319
[14.]
Y. Chudnovsky, A.E. Adams, P.B. Robbins, Q. Lin, P.A. Khavari.
Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.
Nat Genet, 37 (2005), pp. 745-749
[15.]
P. Uribe, I.I. Wistuba, S. González.
Allelotyping, Microsatellite Instability, and BRAF Mutation. Analyses in common and atypical melanocytic nevi and primary cutaneous melanomas.
Am J Dermatopathol, 31 (2009), pp. 354-363
[16.]
L. Chin, G. Merlino, R.A. DePinho.
Malignant melanoma: modern black plague and genetic black box.
Genes Dev, 12 (1999), pp. 3467-3481
[17.]
T. Papp, H. Pemsel, R. Zimmermann, R. Bastrop, D.G. Weiss, D. Schiffmann.
Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in humancongenital melanocytic naevi.
J Med Genet, 36 (1999), pp. 610-614
[18.]
M. Jafari, T. Papp, S. Kirchner, U. Diener, D. Henschler, G. Burg, et al.
Analysis of ras mutations in human melanocytic lesions: activation of the ras gene seems to be associated with the nodular type of human malignant melanoma.
J Cancer Res Clin Oncol, 121 (1995), pp. 23-30
[19.]
A. Van Elsas, S.F. Zerp, S. van der Flier, K.M. Kruse, C. Aarnoudse, Hayward., et al.
Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma.
Am J Pathol, 149 (1996), pp. 883-893
[20.]
B.C. Bastian, P.E. LeBoit, D. Pinkel.
Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features.
Am J Pathol, 157 (2000), pp. 967-972
[21.]
N. Bardeesy, B.C. Bastian, A. Hezel, D. Pinkel, R.A. DePinho, L. Chin.
Dual inactivation of RB and p53 pathways in RAS-induced melanomas.
Mol Cell Biol, 21 (2001), pp. 2144-2153
[22.]
N.E. Sharpless, K. Kannan, J. Xu, M.W. Bosenberg, L. Chin.
Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo.
Oncogene, 22 (2003), pp. 5055-5059
[23.]
J. Ackermann, M. Frutschi, K. Kaloulis, T. McKee, A. Trumpp, F. Beermann.
Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background.
Cancer Res, 65 (2005), pp. 4005-4011
[24.]
J.F. Thompson, R.A. Scolyer, R.F. Kefford.
Cutaneous melanoma.
[25.]
A. Kamb, N.A. Gruis, J. Weaver-Feldhaus, Q. Liu, K. Harshman, S.V. Tavtigian, et al.
A cell cycle regulator potentially involved in genesis of many tumor types.
Science, 264 (1994), pp. 436-440
[26.]
T. Nobori, K. Miura, D.J. Wu, A. Lois, K. Takabayashi, D.A. Carson.
Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers.
Nature, 368 (1994), pp. 753-756
[27.]
J.F. Flores, G.J. Walker, J.M. Glendening, F.G. Haluska, J.S. Castresana, M.P. Rubio, et al.
Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma.
Cancer Res, 56 (1996), pp. 5023-5032
[28.]
H. Wu, V. Goel, F.G. Haluska.
PTEN signaling pathways in melanoma.
Oncogene, 22 (2003), pp. 3113-3122
[29.]
J. Li, C. Yen, D. Liaw, K. Podsypanina, S. Bose, S.I. Wang, et al.
PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer.
Science, 275 (1997), pp. 1943-1947
[30.]
P.A. Steck, M.A. Pershouse, S.A. Jasser, W.K. Yung, H. Lin, A.H. Ligon, et al.
Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers.
Nat Genet, 15 (1997), pp. 356-362
[31.]
M.J. You, D.H. Castrillon, B.C. Bastian, R.C. O’Hagan, M.W. Bosenberg, R. Parsons, et al.
Genetic analysis of Pten and Ink4a/Arf interactions in the suppression of tumorigenesis in mice.
Proc Natl Acad Sci U S A, 99 (2002), pp. 1455-1460
[32.]
B.A. Gilchrest, M.S. Eller, A.C. Geller, M. Yaar.
The pathogenesis of melanoma induced by ultraviolet radiation.
N Engl J Med, 340 (1999), pp. 1341-1348
[33.]
S. Gandini, F. Sera, M.S. Cattaruzza, P. Pasquini, D. Abeni, P. Boyle, et al.
A meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi.
Eur J Cancer, 41 (2005), pp. 28-44
[34.]
S. Gandini, F. Sera, M.S. Cattaruzza, P. Pasquini, R. Zanetti, C. Masini, et al.
B. Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors.
Eur J Cancer, 41 (2005), pp. 2040-2059
[35.]
C.J. Hussussian, J.P. Struewing, A.M. Goldstein, P.A. Higgins, D.S. Ally, M.D. Sheahan, et al.
Germline p16 mutations in familial melanoma.
Nat Genet, 8 (1994), pp. 15-21
[36.]
L. Chin.
The genetics of malignant melanoma: Lessons from mouse and man.
Nat Rev Cancer, 3 (2003), pp. 559-570
[37.]
N.E. Sharpless.
Ink4a/Arf links senescence and aging.
Exp Gerontol, 39 (2004), pp. 1751-1759
[38.]
H. Tsao, X. Zhang, K. Kwitkiwski, D.M. Finkelstein, A.J. Sober, F.G. Haluska.
Low prevalence of germline CDKN2A and CDK4 mutations in patients with early-onset melanoma.
Arch Dermatol, 136 (2000), pp. 1118-1122
[39.]
M. Serrano, G.J. Hannon, D. Beach.
A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4.
Nature, 366 (1993), pp. 704-707
[40.]
T. Kamijo, J.D. Weber, G. Zambetti, F. Zindy, M.F. Roussel, C.J. Sherr.
Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2.
Proc Natl Acad Sci, 95 (1998), pp. 8292-8297
[41.]
J. Pomerantz, N. Schreiber-Agus, N.J. Liegeois, A. Silverman, L. Alland, L. Chin, et al.
The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53.
Cell, 92 (1998), pp. 713-723
[42.]
G.P. Robertson.
Functional and therapeutic significance of Akt deregulation in malignant melanoma.
Cancer Metastasis Rev, 24 (2005), pp. 273-285
[43.]
D.L. Dai, M. Martinka, G. Li.
Prognostic significance of activated Akt expression in melanoma: a clinicopathologic study of 292 cases.
J Clin Oncol, 23 (2005), pp. 1473-1482
[44.]
B.C. Bastian.
Understanding the progression of melanocytic neoplasia using genomic analysis: From fields to cancer.
Oncogene, 22 (2003), pp. 3081-3086
[45.]
J.M. Stahl, A. Sharma, M. Cheung, M. Zimmerman, J.Q. Cheng, M.W. Bosenberg, et al.
Deregulated Akt3 activity promotes development of malignant melanoma.
Cancer Res, 64 (2004), pp. 7002-7010
[46.]
L.A. Garraway, W.R. Sellers.
From integrated genomics to tumor lineage dependency.
Cancer Res, 66 (2006), pp. 2506-2508
[47.]
E. Steingrimsson, K.J. Moore, M.L. Lamoreux, A.R. Ferré-D’Amaré, S.K. Burley, D.C. Zimring, et al.
Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences.
Nat Genet, 8 (1994), pp. 256-263
[48.]
D. Banerjee.
Genasense.
Curr Opin Investig Drugs, 2 (2001), pp. 574-580
[49.]
C.R. Goding.
Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage.
Genes Dev, 14 (2000), pp. 1712-1728
[50.]
J. Du, A.J. Miller, H.R. Widlund, M.A. Horstmann, S. Ramaswamy, D.E. Fisher.
MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma.
Am J Pathol, 163 (2003), pp. 333-343
[51.]
A.E. Loercher, E.M.H. Tank, R.B. Delston, J.W. Harbour.
MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A.
J Cell Biol, 168 (2005), pp. 35-40
[52.]
L.A. Garraway, H.R. Widlund, M.A. Rubin, G. Getz, A.J. Berger, S. Ramaswamy, et al.
Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma.
Nature, 436 (2005), pp. 117-122
[53.]
R.L. Lamason, M.A. Mohideen, J.R. Mest, A.C. Wong, H.L. Norton, M.C. Aros, et al.
SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans.
Science, 310 (2005), pp. 1782-1786
[54.]
R.A. Sturm.
Skin colour and skin cancer—MC1R, the genetic link.
Melanoma Res, 12 (2002), pp. 405-416
[55.]
N. Flanagan, E. Healy, A. Ray, S. Philips, C. Todd, I.J. Jackson, et al.
Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human pigmentation.
Hum Mol Genet, 9 (2000), pp. 2531-2537
[56.]
J.S. Palmer, D.L. Duffy, N.F. Box, J.F. Aitken, L.E. O’Gorman, A.C. Green, et al.
Melanocortin-1 receptor polymorphisms and risk of melanoma: Is the association explained solely by pigmentation phenotype?.
Am J Hum Genet, 66 (2000), pp. 176-186
[57.]
C. Bertolotto, P. Abbe, T.J. Hemesath, K. Bille, D.E. Fisher, J.P. Ortonne, et al.
Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes.
J Cell Biol, 142 (1998), pp. 827-835
[58.]
C.J. Gottardi, B.M. Gumbiner.
Adhesion signaling: how beta-catenin interacts with its partners.
Curr Biol, 11 (2001), pp. R792-R794
[59.]
F.H. Brembeck, T. Schwarz-Romond, J. Bakkers, S. Wilhelm, M. Hammerschmidt, W. Birchmeier.
Essential role of BCL9-2 in the switch between beta-catenin's adhesive and transcriptional functions.
Genes Dev, 18 (2004), pp. 2225-2230
[60.]
A.T. Weeraratna, Y. Jiang, G. Hostetter, K. Rosenblatt, P. Duray, M. Bittner, et al.
Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma.
Cancer Cell, 1 (2002), pp. 279-288
[61.]
M.Y. Hsu, M.J. Wheelock, K.R. Johnson, M. Herlyn.
Shifts in cadherin profiles between human normal melanocytes and melanomas.
J Investig Dermatol Symp Proc, 1 (1996), pp. 188-194
[62.]
J. Qi, N. Chen, J. Wang, C.H. Siu.
Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway.
Mol Biol Cell, 16 (2005), pp. 4386-4397
[63.]
G. Li, K. Satyamoorthy, M. Herlyn.
N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells.
Cancer Res, 61 (2001), pp. 3819-3825
[64.]
S. Kuphal, R. Bauer, A.K. Bosserhoff.
Integrin signaling in malignant melanoma.
Cancer Metastasis Rev, 24 (2005), pp. 195-222
[65.]
E.H. Danen, P.J. Ten Berge, G.N. Van Muijen, A.E. Van ‘t Hof-Grootenboer, E.B. Brocker, D.J. Ruiter.
Emergence of alpha 5 beta1 fibronectin-and alpha v beta 3 vitronectin- receptor expression in melanocytic tumour progression.
Histopathology, 24 (1994), pp. 249-256
[66.]
P.C. Brooks, S. Stromblad, L.C. Sanders, T.L. von Schalscha, R.T. Aimes, W.G. Stetler-Stevenson, et al.
Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3.
Cell, 85 (1996), pp. 683-693
[67.]
B. Felding-Habermann, E. Fransvea, T.E. O’Toole, L. Manzuk, B. Faha, M. Hensler.
Involvement of tumor cell integrin alpha v beta 3 in hematogenous metastasis of human melanoma cells.
Clin Exp Metastasis, 19 (2002), pp. 427-436
[68.]
U.B. Hofmann, J.R. Westphal, E.T. Waas, J.C. Becker, D.J. Ruiter, G.N. van Muijen.
Coexpression of integrin alpha(v) beta3 and matrix metalloproteinase-2 (MMP-2) coincides with MMP-2 activation: correlation with melanoma progression.
J Invest Dermatol, 115 (2000), pp. 625-632
[69.]
E. Petitclerc, S. Stromblad, T.L. von Schalscha, F. Mitjans, J. Piulats, A.M. Montgomery, et al.
Integrin alpha(v) beta3 promotes M21 melanoma growth in human skin by regulating tumor cell survival.
Cancer Res, 59 (1999), pp. 2724-2730
[70.]
X. Li, J. Regezi, F.P. Ross, S. Blystone, D. Ilic’, S.P. Leong, et al.
Integrin alphavbeta3 mediates K1735 murine melanoma cell motility in vivo and in vitro.
J Cell Sci, 114 (2001), pp. 2665-2672
[71.]
G. Fabrizi, G. Massi.
Spitzoid malignant melanoma in teenagers: an entity with no better prognosis than that of other forms of melanoma.
Histopathology, 38 (2001), pp. 448-453
[72.]
J.M. Mones, A.B. Ackerman.
Melanomas in prepubescent children: review comprehensively, critique historically, criteria diagnostically, and course biologically.
Am J Dermatopathol, 25 (2003), pp. 223-238
[73.]
J. Wechsler, S. Bastuji-Garin, A. Spatz, C. Bailly, B. Cribier, L. Andrac-Meyer, et al.
Reliability of the histopathologic diagnosis of malignant melanoma in childhood.
Arch Derm, 138 (2002), pp. 625-628
[74.]
R.L. Barnhill, Z.B. Argenyi, L. From, L.F. Glass, J.C. Maize, M.C. Mihm Jr, et al.
Atypical Spitz nevi/tumors: lack of consensus for diagnosis, discrimination from melanoma, and prediction of outcome.
Hum Pathol, 30 (1999), pp. 513-520
[75.]
J.M. Mones, A.B. Ackerman.
«Atypical» Spitz's nevus, «malignant » Spitz's nevus, and «metastasizing» Spitz's nevus: a critique in historical perspective of three concepts flawed fatally.
Am J Dermatopathol, 26 (2004), pp. 310-333
[76.]
R.L. Barnhill.
The Spitzoid lesion: rethinking Spitz tumors, atypical variants, ‘Spitzoid melanoma’ and risk assessment.
Mod Pathol, 19 (2006), pp. S21-S33
[77.]
J.A. Curtin, J. Fridlyand, T. Kageshita, H.N. Patel, K.J. Busam, H. Kutzner, et al.
Distinct sets of genetic alterations in melanoma.
N Engl J Med, 353 (2005), pp. 2135-2147
[78.]
G. Palmedo, M. Hantschke, A. Rutten, T. Mentzel, H. Hugel, M.J. Flaig, et al.
The T1796A mutation of the BRAF gene is absent in Spitz nevi.
J Cut Pathol, 31 (2004), pp. 266-270
[79.]
G. Saldanha, D. Purnell, A. Fletcher, L. Potter, A. Gillies, J.H. Pringle.
High BRAF mutation frequency does not characterize all melanocytic tumor types.
Int J Cancer, 111 (2004), pp. 705-710
[80.]
D. Mihic-Probst, A. Perren, S. Schmid, P. Saremaslani, P. Komminoth, P.U. Heitz.
Absence of BRAF gene mutations differentiates spitz nevi from malignant melanoma.
Anticancer Res, 24 (2004), pp. 2415-2418
[81.]
M. Gill, J. Cohen, N. Renwick, J.M. Mones, D.N. Silvers, J.T. Celebi.
Genetic similarities between Spitz nevus and Spitzoid melanoma in children.
Cancer, 101 (2004), pp. 2636-2640
[82.]
D.J. Turner, M.A. Zirvi, F. Barany, R. Elenitsas, J. Seykora.
Detection of the BRAF V600E mutation in melanocytic lesions using the ligase detection reaction.
J Cut Pathol, 32 (2005), pp. 334-339
[83.]
M.C. Van Dijk, M.R. Bernsen, D.J. Ruiter.
Analysis of mutations in B-RAF, N-RAS, and H-RAS genes in the differential diagnosis of Spitz nevus and spitzoid melanoma.
Am J Surg Pathol, 29 (2005), pp. 1145-1151
[84.]
M. Takata, J. Lin, S. Takayanagi, T. Suzuki, S. Ansai, T. Kimura, et al.
Genetic and epigenetic alterations in the differential diagnosis of malignant melanoma and spitzoid lesion.
Br J Dermatol, 156 (2007), pp. 1287-1294
[85.]
R. Hay, E. MacRae, D. Barber, M. Khalil, D.J. Demetrick.
BRAF mutations in melanocytic lesions and papillary thyroid carcinoma samples identified using melting curve analysis of polymerase chain reaction products.
Arch Pathol Lab Med, 131 (2007), pp. 1361-1367
[86.]
D.R. Fullen, J.N. Poynter, L. Lowe, L.D. Su, J.T. Elder, R.P. Nair, et al.
BRAF and NRAS mutations in spitzoid melanocytic lesions.
Mod Pathol, 19 (2006), pp. 1324-1332
[87.]
C.A. La Porta, R. Cardano, F. Facchetti, P. Presicce, S. Rao, E. Privitera, et al.
BRAF V599E mutation occurs in Spitz and Reed naevi.
J Eur Acad Dermatol Venereol, 20 (2006), pp. 1164-1165
[88.]
J.O. Indsto, S. Kumar, L. Wang, K.A. Crotty, S.M. Arbuckle, G.J. Mann.
Low prevalence of RAS-RAF-activating mutations in Spitz melanocytic nevi compared with other melanocytic lesions.
J Cut Pathol, 34 (2007), pp. 448-455
[89.]
B.C. Bastian, U. Wesselmann, D. Pinkel, P.E. Leboit.
Molecular cytogenetic analysis of Spitz nevi shows clear differences to melanoma.
J Invest Dermatol, 113 (1999), pp. 1065-1069
[90.]
J.L. Maldonado, L. Timmerman, J. Fridlyand, B.C. Bastian.
Mechanisms of cell-cycle arrest in Spitz nevi with constitutive activation of the MAP-kinase pathway.
Am J Pathol, 164 (2004), pp. 1783-1787
[91.]
J.A. Curtin, K. Busam, D. Pinkel, B.C. Bastian.
Somatic activation of KIT in distinct subtypes of melanoma.
J Clin Oncol, 24 (2006), pp. 4340-4346
[92.]
J.F. Lyons, S. Wilhelm, B. Hibner, G. Bollag.
Discovery of a novel Raf kinase inhibitor.
Endocr Relat Cancer, 8 (2001), pp. 219-225
[93.]
M.C. Heinrich, C.L. Corless, G.D. Demetri, C.D. Blanke, M. von Mehren, H. Joensuu, et al.
Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor.
J Clin Oncol, 21 (2003), pp. 4342-4349
[94.]
S.R. Hingorani, M.A. Jacobetz, G.P. Robertson, M. Herlyn, D.A. Tuveson.
Suppression of BRAF (V599E) in human melanoma abrogates transformation.
Cancer Res, 63 (2003), pp. 5198-5202
[95.]
M. Karasarides, A. Chiloeches, R. Hayward, D. Niculescu-Duvaz, I. Scanlon, F. Friedlos, et al.
B-RAF is a therapeutic target in melanoma.
Oncogene, 23 (2004), pp. 6292-6298
[96.]
M. Eskandarpour, S. Kiaii, C. Zhu, J. Castro, A.J. Sakko, J. Hansson.
Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells.
Int J Cancer, 115 (2005), pp. 65-73
[97.]
T. Ahmad, T. Eisen.
Kinase inhibition with BAY 43-9006 in renal cell carcinoma.
Clin Cancer Res, 10 (2004), pp. 6388S-6392S
[98.]
Jallal B. Targeted therapeutics in melanoma: Changing the front end of drug development. Keystone symposia. Advances in the understanding and treatment of melanoma. 2006. Abstract n.° 011. p. 26.
[99.]
K.S. Smalley, N.K. Haass, P.A. Brafford, M. Lioni, K.T. Flaherty, M. Herlyn.
Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases.
Mol Cancer Ther, 5 (2006), pp. 1136-1144
[100.]
M.A. Tran, R. Gowda, A. Sharma, E.J. Park, J. Adair, M. Kester, et al.
Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development.
Cancer Res, 68 (2008), pp. 7638-7649
[101.]
K.G. Lasithiotakis, T.W. Sinnberg, B. Schittek, K.T. Flaherty, D. Kulms, E. Maczey, et al.
Combined inhibition of MAPK and mTOR signaling inhibits growth, induces cell death, and abrogates invasive growth of melanoma cells.
J Invest Dermatol, 128 (2008), pp. 2013-2023
[102.]
K.S. Smalley, M. Xiao, J. Villanueva, T.K. Nguyen, K.T. Flaherty, R. Letrero, et al.
CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations.
Oncogene, 28 (2009), pp. 85-94
[103.]
N. Dumaz, R. Hayward, J. Martin, L. Ogilvie, D. Hedley, J.A. Curtin, et al.
In Melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling.
Cancer Res, 66 (2006), pp. 9483-9491
[104.]
P.T. Wan, M.J. Garnett, S.M. Roe, S. Lee, D. Niculescu-Duvaz, V.M. Good, et al.
Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF.
Cell, 116 (2004), pp. 855-867
[105.]
K.S.M. Smalley, K.L. Nathanson, K.T. Flaherty.
Genetic subgrouping of Melanoma reveals new opportunities for targeted therapy.
Cancer Res, 69 (2009), pp. 3141-3244
[106.]
S.M. Wilhelm, C. Carter, L. Tang, D. Wilkie, A. McNabola, H. Rong, et al.
BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis.
Cancer Res, 64 (2004), pp. 7099-7109
[107.]
S. Huang, M. Luca, M. Gutman, D.J. McConkey, K.E. Langley, S.D. Lyman, et al.
Enforced c-KIT expression renders highly metastatic human melanoma cells susceptible to stem cell factor-induced apoptosis and inhibits their tumorigenic and metastatic potential.
Oncogene, 13 (1996), pp. 2339-2347
[108.]
S. Ugurel, R. Hildenbrand, A. Zimpfer, P. La Rosée, P. Paschka, A. Sucker, et al.
Lack of clinical efficacy of imatinib in metastatic melanoma.
Br J Cancer, 92 (2005), pp. 1398-1405
[109.]
J. Lutzky, J. Bauer, B.C. Bastian.
Dose-dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation.
Pigment Cell Melanoma Res, 21 (2008), pp. 492-493
[110.]
F.S. Hodi, P. Friedlander, C.L. Corless, M.C. Heinrich, S. Mac Rae, A. Kruse, et al.
Major response to imatinib mesylate in KIT-mutated melanoma.
J Clin Oncol, 26 (2008), pp. 2046-2051
Copyright © 2009. Academia Española de Dermatología y Venereología
Idiomas
Actas Dermo-Sifiliográficas
Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?