Información de la revista
Vol. 100. Núm. S1.
Mirando hacia el futuro en Dermatología Extraordinario del Centenario. Parte I
Páginas 38-51 (Noviembre 2009)
Compartir
Compartir
Descargar PDF
Spanish PDF
Más opciones de artículo
Vol. 100. Núm. S1.
Mirando hacia el futuro en Dermatología Extraordinario del Centenario. Parte I
Páginas 38-51 (Noviembre 2009)
Acceso a texto completo
Malignant Melanoma–a Genetic Overview
Melanoma maligno: una visión de conjunto sobre la genética
Visitas
4254
S. Bloethner, D. Scherer, M. Drechsel, K. Hemminki, R. Kumar
Autor para correspondencia
r.kumar@dkfz.de

Correspondence: Rajiv Kumar. Division of Molecular Genetic Epidemiology. German Cancer Research Center. Im Neuenheimer Feld 580, 69120 Heidelberg, Germany.
Division of Molecular Genetic Epidemiology. German Cancer Research Center. Heidelberg. Germany
Este artículo ha recibido
Información del artículo
Abstract

Malignant melanoma, a potentially lethal skin neoplasm, is characterized by a complex and heterogeneous etiology. Both incidences and deaths associated with melanoma are increasing in Caucasian populations. While exposure to ultraviolet radiation through sun-exposure is the major risk factor; the host factors including skin type and number of moles are critical in predisposition. The CDKN2A is a high penetrance melanoma susceptibility gene as carriers of the mutations are predisposed to the disease within familial settings. The gene is also somatically altered to varying degrees in sporadic melanoma. The CDK4 gene due to occurrence of activation mutations in a few families worldwide represents another melanoma susceptibility locus. The variants within the melanocortin receptor 1 (MC1R) gene, which encodes a melanocyte specific surface receptor with a key role in pigmentation, are associated with high risk phenotypes and increased risk of melanoma. Melanoma tumors are characterized by activation of the RAS-RAF-MEK-ERK pathway through either autocrine growth factor stimulation or oncogenic mutations in the B-RAF or N-RAS genes. Somatic mutations in the B-RAF gene are complemented by those in the N-RAS gene and represent the major genetic alterations. The mutations in the B-RAF gene in melanoma due to occurrence in melanocytic nevi represent early events that additionally require loss of cell cycle inhibitors like CDKN2A for melanoma progression and development. The sequence of events points to the cooperative collaboration between different genetic pathways in tumor development that can be and are being used as targets for developing specific therapeutic agents.

Key words:
melanoma
genetics
CDKN2A
B-RAF
Resumen

El melanoma maligno, una neoplasia cutánea potencialmente mortal, se caracteriza por una etiología compleja y heterogénea. Tanto la incidencia como las muertes asociadas al melanoma están aumentando en la población caucásica. Aunque la exposición a la radiación ultravioleta a través de la exposición solar es el principal factor de riesgo, los factores que dependen del huésped, como el fototipo y el número de nevus, son críticos en la predisposición. El CDKN2A es un gen de susceptiblidad para el melanoma de alta penetrancia, ya que los portadores de mutaciones están predispuestos a la enfermedad en el entorno familiar. El gen también está alterado somáticamente, en grados variables, en el melanoma esporádico. El gen CDK4, debido a la activación de mutaciones en algunas familias a nivel mundial, representa otro locus de susceptibilidad para el melanoma. Las variaciones dentro del gen del receptor de la melanocortina 1, que codifica un receptor de superficie específico de los melanocitos con un papel clave en la pigmentación, están asociadas con fenotipos de alto riesgo y un riesgo aumentado de melanoma. Los tumores de melanoma se caracterizan por la activación de la vía RAS-RAF-MEK-ERK a través de la estimulación por factor de crecimiento autocrino o por mutaciones oncógenas en los genes B-RAF o N-RAS. Las mutaciones somáticas en el gen B-RAF se complementan por aquellas en el gen N-RAS y representan las principales alteraciones genéticas. Las mutaciones en el gen B-RAF en el melanoma, que tienen lugar en los nevus melanocíticos, representan eventos iniciales que requieren, además, la pérdida de inhibidores del ciclo celular como CDKN2A para la progresión y el desarrollo del mela noma. La secuencia de eventos apunta hacia una colaboración entre las diferentes vías genéticas en el desarrollo tumoral, que pueden y están siendo empleadas como dianas para desarrollar agentes terapéuticos específicos.

Palabras clave:
melanoma
genética
CDKN2A
B-RAF
El Texto completo está disponible en PDF
References
[1.]
E.A. Hurst, J.W. Harbour, L.A. Cornelius.
Ocular melanoma: a review and the relationship to cutaneous melanoma.
Arch Dermatol, 139 (2003), pp. 1067-1073
[2.]
M.B. Lens, M. Dawes.
Global perspectives of contemporary epidemiological trends of cutaneous malignant melanoma.
Br J Dermatol, 150 (2004), pp. 179-185
[3.]
R.C. Martin, E. Robinson.
Cutaneous melanoma in Caucasian New Zealanders: 1995-1999.
ANZ J Surg, 74 (2004), pp. 233-237
[4.]
R.M. MacKie, C.A. Bray, D.J. Hole, A. Morris, M. Nicolson, A. Evans, et al.
Incidence of and survival from malignant melanoma in Scotland: an epidemiological study.
[5.]
T.L. Diepgen, V. Mahler.
The epidemiology of skin cancer.
Br J Dermatol, 146 (2002), pp. 1-6
[6.]
C. Bevona, A.J. Sober.
Melanoma incidence trends.
Dermatol Clin, 20 (2002), pp. 589-595
[7.]
C. Garbe, G.R. McLeod, P.G. Buettner.
Time trends of cutaneous melanoma in Queensland, Australia and Central Europe.
Cancer, 89 (2000), pp. 1269-1278
[8.]
W.O. Jones, C.R. Harman, A.K. Ng, J.H. Shaw.
Incidence of malignant melanoma in Auckland, New Zealand: highest rates in the world.
World J Surg, 23 (1999), pp. 732-735
[9.]
A. Jemal, S.S. Devesa, P. Hartge, M.A. Tucker.
Recent trends in cutaneous melanoma incidence among whites in the United States.
J Natl Cancer Inst, 93 (2001), pp. 678-683
[10.]
J.L. Bulliard, B. Cox, R. Semenciw.
Trends by anatomic site in the incidence of cutaneous malignant melanoma in Canada, 1969-93.
Cancer Causes Control, 10 (1999), pp. 407-416
[11.]
C. Garbe, A. Blum.
Epidemiology of cutaneous melanoma in Germany and worldwide.
Skin Pharmacol Appl Skin Physiol, 14 (2001), pp. 280-290
[12.]
E. Mansson-Brahme, H. Johansson, O. Larsson, L.E. Rutqvist, U. Ringborg.
Trends in incidence of cutaneous malignant melanoma in a Swedish population 1976-1994.
Acta Oncol, 41 (2002), pp. 138-146
[13.]
F. Stracci, L. Minelli, D. D’Alo, I. Fusco-Moffa, E. Falsettini, T. Cassetti, et al.
Incidence, mortality and survival trends of cutaneous melanoma in Umbria, Italy. 1978-82 and 1994-98.
Tumori, 91 (2005), pp. 6-8
[14.]
R. Ocana-Riola, C. Martínez-García, S. Serrano, A. Buendía-Eisman, C. Ruiz-Baena, J. Canela-Soler.
Population-based study of cutaneous malignant melanoma in the Granada province (Spain), 1985-1992.
Eur J Epidemiol, 17 (2001), pp. 169-174
[15.]
Y.J. Chen, C.Y. Wu, J.T. Chen, J.L. Shen, C.C. Chen, H.C. Wang.
Clinicopathologic analysis of malignant melanoma in Taiwan.
J Am Acad Dermatol, 41 (1999), pp. 945-949
[16.]
D. Koh, H. Wang, J. Lee, K.S. Chia, H.P. Lee, C.L. Goh.
Basal cell carcinoma, squamous cell carcinoma and melanoma of the skin: analysis of the Singapore Cancer Registry data 1968-97.
Br J Dermatol, 148 (2003), pp. 1161-1166
[17.]
M.R. Hamre, P. Chuba, S. Bakhshi, R. Thomas, R.K. Severson.
Cutaneous melanoma in childhood and adolescence.
Pediatr Hematol Oncol, 19 (2002), pp. 309-317
[18.]
A.S. Pappo.
Melanoma in children and adolescents.
Eur J Cancer, 39 (2003), pp. 2651-2661
[19.]
R. Marks.
Epidemiology of melanoma.
Clin Exp Dermatol, 25 (2000), pp. 459-463
[20.]
E. de Vries, J.W. Coebergh.
Cutaneous malignant melanoma in Europe.
Eur J Cancer, 40 (2004), pp. 2355-2366
[21.]
S. Gandini, F. Sera, M.S. Cattaruzza, P. Pasquini, R. Zanetti, C. Masini, et al.
Meta-analysis of risk factors for cutaneous melanoma: III. Family history, actinic damage and phenotypic factors.
Eur J Cancer, 41 (2005), pp. 2040-2059
[22.]
J.M. Elwood.
Melanoma and sun exposure.
Semin Oncol, 23 (1996), pp. 650-666
[23.]
J.M. Elwood, J. Jopson.
Melanoma and sun exposure: an overview of published studies.
Int J Cancer, 73 (1997), pp. 198-203
[24.]
D. Ford, J.M. Bliss, A.J. Swerdlow, B.K. Armstrong, S. Franceschi, A. Green, et al.
Risk of cutaneous melanoma associated with a family history of the disease. The International Melanoma Analysis Group (IMAGE).
Int J Cancer, 62 (1995), pp. 377-381
[25.]
F.P. Noonan, J.A. Recio, H. Takayama, P. Duray, M.R. Anver, W.L. Rush, et al.
Neonatal sunburn and melanoma in mice.
Nature, 413 (2001), pp. 271-272
[26.]
P. Autier, J.F. Dore.
Influence of sun exposures during childhood and during adulthood on melanoma risk. EPIMEL and EORTC Melanoma Cooperative Group. European Organisation for Research and Treatment of Cancer.
Int J Cancer, 77 (1998), pp. 533-537
[27.]
M.A. Tucker, A. Halpern, E.A. Holly, P. Hartge, D.E. Elder, R.W. Sagebiel, et al.
Clinically recognized dysplastic nevi. A central risk factor for cutaneous melanoma.
JAMA, 277 (1997), pp. 1439-1444
[28.]
M. Berwick, A. Halpern.
Melanoma epidemiology.
Curr Opin Oncol, 9 (1997), pp. 178-182
[29.]
J. Bauer, C. Garbe.
Acquired melanocytic nevi as risk factor for melanoma development. A comprehensive review of epidemiological data.
Pigment Cell Res, 16 (2003), pp. 297-306
[30.]
A.E. Grulich, V. Bataille, A.J. Swerdlow, J.A. Newton-Bishop, J. Cuzick, P. Hersey, et al.
Naevi and pigmentary characteristics as risk factors for melanoma in a high-risk population: a case-control study in New South Wales, Australia.
[31.]
K. Hemminki, I. Lonnstedt, P. Vaittinen, P. Lichtenstein.
Estimation of genetic and environmental components in colorectal and lung cancer and melanoma.
[32.]
P. Lichtenstein, N.V. Holm, P.K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, et al.
Environmental and heritable factors in the causation of cancer–analyses of cohorts of twins from Sweden, Denmark, and Finland.
N Engl J Med, 343 (2000), pp. 78-85
[33.]
K. Hemminki, I. Lonnstedt, P. Vaittinen.
A population-based study of familial cutaneous melanoma.
Melanoma Res, 11 (2001), pp. 133-140
[34.]
N. Hayward.
New developments in melanoma genetics.
Curr Oncol Rep, 2 (2000), pp. 300-306
[35.]
N.K. Hayward.
Genetics of melanoma predisposition.
Oncogene, 22 (2003), pp. 3053-3062
[36.]
L. Zuo, J. Weger, Q. Yang, A.M. Goldstein, M.A. Tucker, G.J. Walker, et al.
Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma.
Nat Genet, 12 (1996), pp. 97-99
[37.]
A. Molven, M.B. Grimstvedt, S.J. Steine, M. Harland, M.F. Avril, N.K. Hayward, et al.
A large Norwegian family with inherited malignant melanoma, multiple atypical nevi, and CDK4 mutation.
Genes Chromosomes Cancer, 44 (2005), pp. 10-18
[38.]
N. Soufir, M.F. Avril, A. Chompret, F. Demenais, J. Bombled, A. Spatz, et al.
Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group.
Hum Mol Genet, 7 (1998), pp. 209-216
[39.]
M. Serrano, H. Lee, L. Chin, C. Cordon-Cardo, D. Beach, R.A. DePinho.
Role of the INK4a locus in tumor suppression and cell mortality.
Cell, 85 (1996), pp. 27-37
[40.]
A. Kamb, N.A. Gruis, J. Weaver-Feldhaus, Q. Liu, K. Harshman, S.V. Tavtigian, et al.
A cell cycle regulator potentially involved in genesis of many tumor types.
Science, 264 (1994), pp. 436-440
[41.]
T. Nobori, K. Miura, D.J. Wu, A. Lois, K. Takabayashi, D.A. Carson.
Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers.
Nature, 368 (1994), pp. 753-756
[42.]
L. Mao, A. Merlo, G. Bedi, G.I. Shapiro, C.D. Edwards, B.J. Rollins, et al.
A novel p16INK4A transcript.
Cancer Res, 55 (1995), pp. 2995-2997
[43.]
D.E. Quelle, F. Zindy, R.A. Ashmun, C.J. Sherr.
Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest.
Cell, 83 (1995), pp. 993-1000
[44.]
L. Liu, A.M. Goldstein, M.A. Tucker, H. Brill, N.A. Gruis, D. Hogg, et al.
Affected members of melanoma-prone families with linkage to 9p21 but lacking mutations in CDKN2A do not harbor mutations in the coding regions of either CDKN2B or p19ARF.
Genes Chromosomes Cancer, 19 (1997), pp. 52-54
[45.]
M. Simon, G. Koster, A.G. Menon, J. Schramm.
Functional evidence for a role of combined CDKN2A (p16-p14[ARF])/ CDKN2B (p15) gene inactivation in malignant gliomas.
Acta Neuropathol, 98 (1999), pp. 444-452
[46.]
J.F. Ross, X. Liu, B.D. Dynlacht.
Mechanism of transcriptional repression of E2F by the retinoblastoma tumor suppressor protein.
Mol Cell, 3 (1999), pp. 195-205
[47.]
J.W. Harbour, D.C. Dean.
The Rb/E2F pathway: expanding roles and emerging paradigms.
Genes Dev, 14 (2000), pp. 2393-2409
[48.]
C.J. Sherr.
Cancer cell cycles.
Science, 274 (1996), pp. 1672-1677
[49.]
M. Serrano, G.J. Hannon, D. Beach.
A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4.
Nature, 366 (1993), pp. 704-707
[50.]
K.S. Tang, A.R. Fersht, L.S. Itzhaki.
Sequential unfolding of ankyrin repeats in tumor suppressor p16.
Structure, 11 (2003), pp. 67-73
[51.]
J. Pomerantz, N. Schreiber-Agus, N.J. Liegeois, A. Silverman, L. Alland, L. Chin, et al.
The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM’2 and neutralizes MDM2s inhibition of p53.
Cell, 92 (1998), pp. 713-723
[52.]
Y. Zhang, Y. Xiong, W.G. Yarbrough.
ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
Cell, 92 (1998), pp. 725-734
[53.]
C.J. Sherr, J.D. Weber.
The ARF/p53 pathway.
Curr Opin Genet Dev, 10 (2000), pp. 94-99
[54.]
J.D. Weber, M.L. Kuo, B. Bothner, E.L. DiGiammarino, R.W. Kriwacki, M.F. Roussel, et al.
Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex.
Mol Cell Biol, 20 (2000), pp. 2517-2528
[55.]
Y. Zhang, Y. Xiong.
Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53.
Mol Cell, 3 (1999), pp. 579-591
[56.]
W. Tao, A.J. Levine.
P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2.
Proc Natl Acad Sci U S A, 96 (1999), pp. 6937-6941
[57.]
C. Korgaonkar, L. Zhao, M. Modestou, D.E. Quelle.
ARF function does not require p53 stabilization or Mdm2 relocalization.
Mol Cell Biol, 22 (2002), pp. 196-206
[58.]
S. Llanos, P.A. Clark, J. Rowe, G. Peters.
Stabilization of p53 by p14ARF without relocation of MDM2 to the nucleolus.
Nat Cell Biol, 3 (2001), pp. 445-452
[59.]
F. Zindy, C.M. Eischen, D.H. Randle, T. Kamijo, J.L. Cleveland, C.J. Sherr, et al.
Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization.
Genes Dev, 12 (1998), pp. 2424-2433
[60.]
G.P. Dimri, K. Itahana, M. Acosta, J. Campisi.
Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor.
Mol Cell Biol, 20 (2000), pp. 273-285
[61.]
S. Bates, A.C. Phillips, P.A. Clark, F. Stott, G. Peters, R.L. Ludwig, et al.
p14ARF links the tumour suppressors RB and p53.
Nature, 395 (1998), pp. 124-125
[62.]
I. Palmero, C. Pantoja, M. Serrano.
p19ARF links the tumour suppressor p53 to Ras.
Nature, 395 (1998), pp. 125-126
[63.]
N.E. Sharpless, N. Bardeesy, K.H. Lee, D. Carrasco, D.H. Castrillon, A.J. Aguirre, et al.
Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis.
Nature, 413 (2001), pp. 86-91
[64.]
T.J. Huot, J. Rowe, M. Harland, S. Drayton, S. Brookes, C. Gooptu, et al.
Biallelic mutations in p16(INK4a) confer resistance to Ras- and Ets-induced senescence in human diploid fibroblasts.
Mol Cell Biol, 22 (2002), pp. 8135-8143
[65.]
T. Kamijo, F. Zindy, M.F. Roussel, D.E. Quelle, J.R. Downing, R.A. Ashmun, et al.
Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF.
Cell, 91 (1997), pp. 649-659
[66.]
F. Zindy, D.E. Quelle, M.F. Roussel, C.J. Sherr.
Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging.
Oncogene, 15 (1997), pp. 203-211
[67.]
W. Wei, R.M. Hemmer, J.M. Sedivy.
Role of p14(ARF) in replicative and induced senescence of human fibroblasts.
Mol Cell Biol, 21 (2001), pp. 6748-6757
[68.]
J. Munro, F.J. Stott, K.H. Vousden, G. Peters, E.K. Parkinson.
Role of the alternative INK4A proteins in human keratinocyte senescence: evidence for the specific inactivation of p16INK4A upon immortalization.
Cancer Res, 59 (1999), pp. 2516-2521
[69.]
V. Calabro, G. Mansueto, R. Santoro, A. Gentilella, A. Pollice, P. Ghioni, et al.
Inhibition of p63 transcriptional activity by p14ARF: functional and physical link between human ARF tumor suppressor and a member of the p53 family.
Mol Cell Biol, 24 (2004), pp. 8529-8540
[70.]
H. Suzuki, M. Kurita, K. Mizumoto, M. Moriyama, S. Aiso, I. Nishimoto, et al.
The ARF tumor suppressor inhibits BCL6-mediated transcriptional repression.
Biochem Biophys Res Commun, 326 (2005), pp. 242-248
[71.]
A. Datta, J. Sen, J. Hagen, C.K. Korgaonkar, M. Caffrey, D.E. Quelle, et al.
ARF directly binds DP1: interaction with DP1 coincides with the G1 arrest function of ARF.
Mol Cell Biol, 25 (2005), pp. 8024-8036
[72.]
M. Ameyar-Zazoua, M.B. Wisniewska, L. Bakiri, E.F. Wagner, M. Yaniv, J.B. Weitzman.
AP-1 dimers regulate transcription of the p14/p19ARF tumor suppressor gene.
Oncogene, 24 (2005), pp. 2298-2306
[73.]
H. Rizos, S. Woodruff, R.F. Kefford.
p14ARF interacts with the SUMO-conjugating enzyme Ubc9 and promotes the sumoylation of its binding partners.
Cell Cycle, 4 (2005), pp. 597-603
[74.]
K. Itahana, K.P. Bhat, A. Jin, Y. Itahana, D. Hawke, R. Kobayashi, et al.
Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation.
Mol Cell, 12 (2003), pp. 1151-1164
[75.]
M. Sugimoto, M.L. Kuo, M.F. Roussel, C.J. Sherr.
Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing.
Mol Cell, 11 (2003), pp. 415-424
[76.]
T. Maeda, R.M. Hobbs, T. Merghoub, I. Guernah, A. Zelent, C. Cordon-Cardo, et al.
Role of the proto-oncogene Pokemon in cellular transformation and ARF repression.
Nature, 433 (2005), pp. 278-285
[77.]
J.J. Jacobs, P. Keblusek, E. Robanus-Maandag, P. Kristel, M. Lingbeek, P.M. Nederlof, et al.
Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19[ARF]) and is amplified in a subset of human breast cancers.
Nat Genet, 26 (2000), pp. 291-299
[78.]
R. Maestro, A.P. Dei Tos, Y. Hamamori, S. Krasnokutsky, V. Sartorelli, L. Kedes, et al.
Twist is a potential oncogene that inhibits apoptosis.
Genes Dev, 13 (1999), pp. 2207-2217
[79.]
P. Krimpenfort, K.C. Quon, W.J. Mooi, A. Loonstra, A. Berns.
Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice.
Nature, 413 (2001), pp. 83-86
[80.]
L. Chin, J. Pomerantz, D. Polsky, M. Jacobson, C. Cohen, C. Cordon-Cardo, et al.
Cooperative effects of INK4a and ras in melanoma susceptibility in vivo.
Genes Dev, 11 (1997), pp. 2822-2834
[81.]
A. Koenig, S.R. Bianco, S. Fosmire, J. Wojcieszyn, J.F. Modiano.
Expression and significance of p53, rb, p21/waf-1, p16/ink-4a, and PTEN tumor suppressors in canine melanoma.
Vet Pathol, 39 (2002), pp. 458-472
[82.]
R.A. Levine, M.A. Fleischli.
Inactivation of p53 and retinoblastoma family pathways in canine osteosarcoma cell lines.
Vet Pathol, 37 (2000), pp. 54-61
[83.]
S.A. Belinsky, K.J. Nikula, W.A. Palmisano, R. Michels, G. Saccomanno, E. Gabrielson, et al.
Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis.
Proc Natl Acad Sci U S A, 95 (1998), pp. 11891-11896
[84.]
J. Schlegel, G. Piontek, M. Kersting, M. Schuermann, R. Kappler, H. Scherthan, et al.
The p16/Cdkn2a/Ink4a gene is frequently deleted in nitrosourea-induced rat glial tumors.
Pathobiology, 67 (1999), pp. 202-206
[85.]
R.S. Nairn, S. Kazianis, B.B. McEntire, L. Della Coletta, R.B. Walter, D.C. Morizot.
A CDKN2-like polymorphism in Xiphophorus LG V is associated with UV-B-induced melanoma formation in platyfish-swordtail hybrids.
Proc Natl Acad Sci U S A, 93 (1996), pp. 13042-13047
[86.]
D.T. Bishop, F. Demenais, A.M. Goldstein, W. Bergman, J.N. Bishop, B. Bressac-de Paillerets, et al.
Geographical variation in the penetrance of CDKN2A mutations for melanoma.
J Natl Cancer Inst, 94 (2002), pp. 894-903
[87.]
B. Bressac-de-Paillerets, M.F. Avril, A. Chompret, F. Demenais.
Genetic and environmental factors in cutaneous malignant melanoma.
Biochimie, 84 (2002), pp. 67-74
[88.]
A.M. Goldstein, J.P. Struewing, A. Chidambaram, M.C. Fraser, M.A. Tucker.
Genotype-phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations.
J Natl Cancer Inst, 92 (2000), pp. 1006-1010
[89.]
G. Lal, L. Liu, D. Hogg, N.J. Lassam, M.S. Redston, S. Gallinger.
Patients with both pancreatic adenocarcinoma and melanoma may harbor germline CDKN2A mutations.
Genes Chromosomes Cancer, 27 (2000), pp. 358-361
[90.]
J.A. Randerson-Moor, M. Harland, S. Williams, D. Cuthbert-Heavens, E. Sheridan, J. Aveyard, et al.
A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family.
Hum Mol Genet, 10 (2001), pp. 55-62
[91.]
R. Kumar, I. Sauroja, K. Punnonen, C. Jansen, K. Hemminki.
Selective deletion of exon 1 beta of the p19ARF gene in metastatic melanoma cell lines.
Genes Chromosomes Cancer, 23 (1998), pp. 273-277
[92.]
S.H. Mistry, C. Taylor, J.A. Randerson-Moor, M. Harland, F. Turner, J.H. Barrett, et al.
Prevalence of 9p21 deletions in UK melanoma families.
Genes Chromosomes Cancer, 44 (2005), pp. 292-300
[93.]
M. Bahuau, D. Vidaud, M. Kujas, A. Palangie, B. Assouline, M. Chaignaud-Lebreton, et al.
Familial aggregation of malignant melanoma/dysplastic naevi and tumours of the nervous system: an original syndrome of tumour proneness.
Ann Genet, 40 (1997), pp. 78-91
[94.]
F. Petronzelli, D. Sollima, G. Coppola, M.E. Martini-Neri, G. Neri, M. Genuardi.
CDKN2A germline splicing mutation affecting both p16(ink4) and p14(arf) RNA processing in a melanoma/neurofibroma kindred.
Genes Chromosomes Cancer, 31 (2001), pp. 398-401
[95.]
C. Hewitt, C. Lee Wu, G. Evans, A. Howell, R.G. Elles, R. Jordan, et al.
Germline mutation of ARF in a melanoma kindred.
Hum Mol Genet, 11 (2002), pp. 1273-1279
[96.]
H. Rizos, S. Puig, C. Badenas, J. Malvehy, A.P. Darmanian, L. Jiménez, et al.
A melanoma-associated germline mutation in exon 1beta inactivates p14ARF.
Oncogene, 20 (2001), pp. 5543-5547
[97.]
M. Harland, C.F. Taylor, P.A. Chambers, K. Kukalizch, J.A. Randerson-Moor, N.A. Gruis, et al.
A mutation hotspot at the p14ARF splice site.
Oncogene, 24 (2005), pp. 4604-4608
[98.]
J.F. Flores, G.J. Walker, J.M. Glendening, F.G. Haluska, J.S. Castresana, M.P. Rubio, et al.
Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma.
Cancer Res, 56 (1996), pp. 5023-5032
[99.]
G.J. Walker, J.F. Flores, J.M. Glendening, A.H. Lin, I.D. Markl, J.W. Fountain.
Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets.
Genes Chromosomes Cancer, 22 (1998), pp. 157-163
[100.]
R. Kumar, B. Lundh Rozell, J. Louhelainen, K. Hemminki.
Mutations in the CDKN2A (p16INK4a) gene in microdissected sporadic primary melanomas.
Int J Cancer, 75 (1998), pp. 193-198
[101.]
A. Fujimoto, R. Morita, N. Hatta, K. Takehara, M. Takata.
p16INK4a inactivation is not frequent in uncultured sporadic primary cutaneous melanoma.
Oncogene, 18 (1999), pp. 2527-2532
[102.]
J.P. Alao, M.Q. Mohammed, S. Retsas.
The CDKN2A tumour suppressor gene: no mutations detected in patients with melanoma and additional unrelated cancers.
Melanoma Res, 12 (2002), pp. 559-563
[103.]
J.W. Rocco, D. Sidransky.
p16(MTS-1/CDKN2/INK4a) in cancer progression.
Exp Cell Res, 264 (2001), pp. 42-55
[104.]
M.L. Gonzalgo, C.M. Bender, E.H. You, J.M. Glendening, J.F. Flores, G.J. Walker, et al.
Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors.
Cancer Res, 57 (1997), pp. 5336-5347
[105.]
F. von Eggeling, G. Werner, C. Theuer, U. Riese, R. Dahse, W. Fiedler, et al.
Analysis of the tumor suppressor gene p16(INK4A) in microdissected melanoma metastases by sequencing, and microsatellite and methylation screening.
Arch Dermatol Res, 291 (1999), pp. 474-477
[106.]
A.R. Cachia, J.O. Indsto, K.M. McLaren, G.J. Mann, M.J. Arends.
CDKN2A mutation and deletion status in thin and thick primary melanoma.
Clin Cancer Res, 6 (2000), pp. 3511-3515
[107.]
R. Kumar, J. Smeds, B. Lundh Rozell, K. Hemminki.
Loss of heterozygosity at chromosome 9p21 (INK4-p14ARF locus): homozygous deletions and mutations in the p16 and p14ARF genes in sporadic primary melanomas.
Melanoma Res, 9 (1999), pp. 138-147
[108.]
J. Smeds, R. Kumar, B.L. Rozell, K. Hemminki.
Increased frequency of LOH on chromosome 9 in sporadic primary melanomas is associated with increased patient age at diagnosis.
Mutagenesis, 15 (2000), pp. 257-260
[109.]
P.M. Pollock, J. Welch, N.K. Hayward.
Evidence for three tumor suppressor loci on chromosome 9p involved in melanoma development.
Cancer Res, 61 (2001), pp. 1154-1161
[110.]
S.J. Pavey, M.C. Cummings, D.C. Whiteman, M. Castellano, M.D. Walsh, B.G. Gabrielli, et al.
Loss of p16 expression is associated with histological features of melanoma invasion.
Melanoma Res, 12 (2002), pp. 539-547
[111.]
O. Straume, L. Sviland, L.A. Akslen.
Loss of nuclear p16 protein expression correlates with increased tumor cell proliferation (Ki-67) and poor prognosis in patients with vertical growth phase melanoma.
Clin Cancer Res, 6 (2000), pp. 1845-1853
[112.]
K. Lamperska, K. Mackiewicz, A. Kaczmarek, E. Kwiatkowska, M. Starzycka, B. Romanowska, et al.
Expression of p16 rimary uveal melanoma.
Acta Biochim Pol, 49 (2002), pp. 377-385
[113.]
J. Aitken, J. Welch, D. Duffy, A. Milligan, A. Green, N. Martin, et al.
CDKN2A variants in a population-based sample of Queensland families with melanoma.
J Natl Cancer Inst, 91 (1999), pp. 446-452
[114.]
R. Kumar, J. Smeds, P. Berggren, O. Straume, B.L. Rozell, L.A. Akslen, et al.
A single nucleotide polymorphism in the 3’untranslated region of the CDKN2A gene is common in sporadic primary melanomas but mutations in the CDKN2B, CDKN2C, CDK4 and p53 genes are rare.
Int J Cancer, 95 (2001), pp. 388-393
[115.]
P. Chaubert, P. Shaw, N. Pillet.
Informative MspI polymorphism adjacent to exon 3 of the p16INK4 (MTS1) gene.
Mol Cell Probes, 10 (1996), pp. 467-468
[116.]
E.A. Holland, S.C. Beaton, T.M. Becker, O.M. Grulet, B.A. Peters, H. Rizos, et al.
Analysis of the p16 gene, CDKN2, in 17 Australian melanoma kindreds.
Oncogene, 11 (1995), pp. 2289-2294
[117.]
I. Sauroja, J. Smeds, T. Vlaykova, R. Kumar, L. Talve, M. Hahka-Kemppinen, et al.
Analysis of G(1)/S checkpoint regulators in metastatic melanoma.
Genes Chromosomes Cancer, 28 (2000), pp. 404-414
[118.]
O. Straume, J. Smeds, R. Kumar, K. Hemminki, L.A. Akslen.
Significant impact of promoter hypermethylation and the 540 C > T polymorphism of CDKN2A in cutaneous melanoma of the vertical growth phase.
Am J Pathol, 161 (2002), pp. 229-237
[119.]
R. Lilischkis, B. Sarcevic, C. Kennedy, A. Warlters, R.L. Sutherland.
Cancer-associated mis-sense and deletion mutations impair p16INK4 CDK inhibitory activity.
[120.]
M. Ruas, G. Peters.
The p16INK4a/CDKN2A tumor suppressor and its relatives.
Biochim Biophys Acta, 1378 (1998), pp. F115-F177
[121.]
A. Reymond, R. Brent.
p16 proteins from melanoma-prone families are deficient in binding to Cdk4.
Oncogene, 11 (1995), pp. 1173-1178
[122.]
T. Debniak, R.J. Scott, T. Huzarski, T. Byrski, A. Rozmiarek, B. Debniak, et al.
CDKN2A common variants and their association with melanoma risk: a population-based study.
Cancer Res, 65 (2005), pp. 835-839
[123.]
S. Puig, J. Malvehy, C. Badenas, A. Ruiz, D. Jiménez, F. Cuéllar, et al.
Role of the CDKN2A locus in patients with multiple primary melanomas.
J Clin Oncol, 23 (2005), pp. 3043-3051
[124.]
S. Ortega, M. Malumbres, M. Barbacid.
Cyclin D-dependent kinases, INK4 inhibitors and cancer.
Biochim Biophys Acta, 1602 (2002), pp. 73-87
[125.]
S.G. Rane, P. Dubus, R.V. Mettus, E.J. Galbreath, G. Boden, E.P. Reddy, et al.
Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia.
Nat Genet, 22 (1999), pp. 44-52
[126.]
R. Sotillo, J.F. García, S. Ortega, J. Martín, P. Dubus, M. Barbacid, et al.
Invasive melanoma in Cdk4-targeted mice.
Proc Natl Acad Sci U S A, 98 (2001), pp. 13312-13317
[127.]
J.C. García-Borron, B.L. Sánchez-Laorden, C. Jiménez-Cervantes.
Melanocortin-1 receptor structure and functional regulation.
Pigment Cell Res, 18 (2005), pp. 393-410
[128.]
J.Y. Lin, D.E. Fisher.
Melanocyte biology and skin pigmentation.
Nature, 445 (2007), pp. 843-850
[129.]
N.F. Box, D.L. Duffy, W. Chen, M. Stark, N.G. Martin, R.A. Sturm, et al.
MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations.
Am J Hum Genet, 69 (2001), pp. 765-773
[130.]
P.A. van der Velden, L.A. Sandkuijl, W. Bergman, S. Pavel, L. van Mourik, R.R. Frants, et al.
Melanocortin-1 receptor variant R151C modifies melanoma risk in Dutch families with melanoma.
Am J Hum Genet, 69 (2001), pp. 774-779
[131.]
M.C. Fargnoli, K. Pike, R.M. Pfeiffer, S. Tsang, E. Rozenblum, D.J. Munroe, et al.
MC1R variants increase risk of melanomas harboring BRAF mutations.
J Invest Dermatol, 128 (2008), pp. 2485-2490
[132.]
D. Scherer, J.L. Bermejo, P. Rudnai, E. Gurzau, K. Koppova, K. Hemminki, et al.
MC1R variants associated susceptibility to basal cell carcinoma of skin: interaction with host factors and XRCC3 polymorphism.
Int J Cancer, 122 (2008), pp. 1787-1793
[133.]
D. Scherer, E. Nagore, J.L. Bermejo, A. Figl, R. Botella-Estrada, R.K. Thirumaran, et al.
Melanocortin receptor 1 variants and melanoma risk: A study of 2 European populations.
Int J Cancer, 125 (2009), pp. 1868-1875
[134.]
K.A. Beaumont, R.A. Newton, D.J. Smit, J.H. Leonard, J.L. Stow, R.A. Sturm.
Altered cell surface expression of human MC1R variant receptor alleles associated with red hair and skin cancer risk.
Hum Mol Genet, 14 (2005), pp. 2145-2154
[135.]
E. Healy, S.A. Jordan, P.S. Budd, R. Suffolk, J.L. Rees, I.J. Jackson.
Functional variation of MC1R alleles from red-haired individuals.
Hum Mol Genet, 10 (2001), pp. 2397-2402
[136.]
K.A. Beaumont, S.N. Shekar, R.A. Newton, M.R. James, J.L. Stow, D.L. Duffy, et al.
Receptor function, dominant negative activity and phenotype correlations for MC1R variant alleles.
Hum Mol Genet, 16 (2007), pp. 2249-2260
[137.]
K.A. Beaumont, S.N. Shekar, A.L. Cook, D.L. Duffy, R.A. Sturm.
Red hair is the null phenotype of MC1R.
Hum Mutat, 29 (2008), pp. E88-E94
[138.]
E. Matichard, P. Verpillat, R. Meziani, B. Gerard, V. Descamps, E. Legroux, et al.
Melanocortin 1 receptor (MC1R) gene variants may increase the risk of melanoma in France independently of clinical risk factors and UV exposure.
J Med Genet, 41 (2004), pp. e13
[139.]
M. Bohm, I. Wolff, T.E. Scholzen, S.J. Robinson, E. Healy, T.A. Luger, et al.
alpha-Melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage.
J Biol Chem, 280 (2005), pp. 5795-5802
[140.]
J.E. Hauser, A.L. Kadekaro, R.J. Kavanagh, K. Wakamatsu, S. Terzieva, S. Schwemberger, et al.
Melanin content and MC1R function independently affect UVR-induced DNA damage in cultured human melanocytes.
Pigment Cell Res, 19 (2006), pp. 303-314
[141.]
Y. Cohen, N. Goldenberg-Cohen, P. Parrella, I. Chowers, S.L. Merbs, J. Pe’er, et al.
Lack of BRAF mutation in primary uveal melanoma.
Invest Ophthalmol Vis Sci, 44 (2003), pp. 2876-2878
[142.]
K. Satyamoorthy, G. Li, M.R. Gerrero, M.S. Brose, P. Volpe, B.L. Weber, et al.
Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation.
Cancer Res, 63 (2003), pp. 756-759
[143.]
K.S. Smalley.
A pivotal role for ERK in the oncogenic behaviour of malignant melanoma?.
Int J Cancer, 104 (2003), pp. 527-532
[144.]
C. Wellbrock, M. Karasarides, R. Marais.
The RAF proteins take centre stage.
Nat Rev Mol Cell Biol, 5 (2004), pp. 875-885
[145.]
J. Pouyssegur, P. Lenormand.
Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling.
Eur J Biochem, 270 (2003), pp. 3291-3299
[146.]
J.S. Sebolt-Leopold, R. Herrera.
Targeting the mitogen-activated protein kinase cascade to treat cancer.
Nat Rev Cancer, 4 (2004), pp. 937-947
[147.]
R. Busca, P. Abbe, F. Mantoux, E. Aberdam, C. Peyssonnaux, A. Eychene, et al.
Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes.
Embo J, 19 (2000), pp. 2900-2910
[148.]
N. Dumaz, R. Marais.
Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways. Based on the anniversary prize of the Gesellschaft fur Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels.
[149.]
K. Pruitt, C.J. Der.
Ras and Rho regulation of the cell cycle and oncogenesis.
Cancer Lett, 171 (2001), pp. 1-10
[150.]
A. Schulze, K. Lehmann, H.B. Jefferies, M. McMahon, J. Downward.
Analysis of the transcriptional program induced by Raf in epithelial cells.
Genes Dev, 15 (2001), pp. 981-994
[151.]
J.T. Huntington, J.M. Shields, C.J. Der, C.A. Wyatt, U. Benbow, C.L. Slingluff Jr., et al.
Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling.
J Biol Chem, 279 (2004), pp. 33168-33176
[152.]
D. Woods, H. Cherwinski, E. Venetsanakos, A. Bhat, S. Gysin, M. Humbert, et al.
Induction of beta3-integrin gene expression by sustained activation of the Ras-regulated Raf-MEK-extracellular signal-regulated kinase signaling pathway.
Mol Cell Biol, 21 (2001), pp. 3192-3205
[153.]
P.M. Campbell, C.J. Der.
Oncogenic Ras and its role in tumor cell invasion and metastasis.
Semin Cancer Biol, 14 (2004), pp. 105-114
[154.]
D.K. Morrison, R.E. Cutler.
The complexity of Raf-1 regulation.
Curr Opin Cell Biol, 9 (1997), pp. 174-179
[155.]
K.E. Mercer, C.A. Pritchard.
Raf proteins and cancer: B-Raf is identified as a mutational target.
Biochim Biophys Acta, 1653 (2003), pp. 25-40
[156.]
L. Wojnowski, A.M. Zimmer, T.W. Beck, H. Hahn, R. Bernal, U.R. Rapp, et al.
Endothelial apoptosis in Braf-deficient mice.
Nat Genet, 16 (1997), pp. 293-297
[157.]
L. Wojnowski, L.F. Stancato, A.M. Zimmer, H. Hahn, T.W. Beck, A.C. Larner, et al.
Craf-1 protein kinase is essential for mouse development.
Mech Dev, 76 (1998), pp. 141-149
[158.]
C.A. Pritchard, L. Bolin, R. Slattery, R. Murray, M. McMahon.
Post-natal lethality and neurological and gastrointestinal defects in mice with targeted disruption of the A-Raf protein kinase gene.
Curr Biol, 6 (1996), pp. 614-617
[159.]
S.M. Storm, J.L. Cleveland, U.R. Rapp.
Expression of raf family proto-oncogenes in normal mouse tissues.
Oncogene, 5 (1990), pp. 345-351
[160.]
H. Chong, H.G. Vikis, K.L. Guan.
Mechanisms of regulating the Raf kinase family.
Cell Signal, 15 (2003), pp. 463-469
[161.]
J.V. Barnier, C. Papin, A. Eychene, O. Lecoq, G. Calothy.
The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression.
J Biol Chem, 270 (1995), pp. 23381-23389
[162.]
H. Davies, G.R. Bignell, C. Cox, P. Stephens, S. Edkins, S. Clegg, et al.
Mutations of the BRAF gene in human cancer.
Nature, 417 (2002), pp. 949-954
[163.]
M.J. Garnett, R. Marais.
Guilty as charged: B-RAF is a human oncogene.
Cancer Cell, 6 (2004), pp. 313-319
[164.]
P.T. Wan, M.J. Garnett, S.M. Roe, S. Lee, D. Niculescu-Duvaz, V.M. Good, et al.
Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF.
Cell, 116 (2004), pp. 855-867
[165.]
V.C. Gray-Schopfer, S. da Rocha Dias, R. Marais.
The role of B-RAF in melanoma.
Cancer Metastasis Rev, 24 (2005), pp. 165-183
[166.]
R. Kumar, S. Angelini, K. Hemminki.
Activating BRAF and N-Ras mutations in sporadic primary melanomas: an inverse association with allelic loss on chromosome 9.
Oncogene, 22 (2003), pp. 9217-9224
[167.]
M.S. Brose, P. Volpe, M. Feldman, M. Kumar, I. Rishi, R. Gerrero, et al.
BRAF and RAS mutations in human lung cancer and melanoma.
Cancer Res, 62 (2002), pp. 6997-7000
[168.]
K. Omholt, A. Platz, L. Kanter, U. Ringborg, J. Hansson.
NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression.
Clin Cancer Res, 9 (2003), pp. 6483-6488
[169.]
J.A. Curtin, K. Busam, D. Pinkel, B.C. Bastian.
Somatic activation of KIT in distinct subtypes of melanoma.
J Clin Oncol, 24 (2006), pp. 4340-4346
[170.]
P.M. Pollock, U.L. Harper, K.S. Hansen, L.M. Yudt, M. Stark, C.M. Robbins, et al.
High frequency of BRAF mutations in nevi.
Nat Genet, 33 (2003), pp. 19-20
[171.]
G. Saldanha, D. Purnell, A. Fletcher, L. Potter, A. Gillies, J.H. Pringle.
High BRAF mutation frequency does not characterize all melanocytic tumor types.
Int J Cancer, 111 (2004), pp. 705-710
[172.]
R. Kumar, S. Angelini, E. Snellman, K. Hemminki.
BRAF mutations are common somatic events in melanocytic nevi.
J Invest Dermatol, 122 (2004), pp. 342-348
[173.]
A.S. Yazdi, G. Palmedo, M.J. Flaig, U. Puchta, A. Reckwerth, A. Rutten, et al.
Mutations of the BRAF gene in benign and malignant melanocytic lesions.
J Invest Dermatol, 121 (2003), pp. 1160-1162
[174.]
E.E. Patton, H.R. Widlund, J.L. Kutok, K.R. Kopani, J.F. Amatruda, R.D. Murphey, et al.
BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma.
Curr Biol, 15 (2005), pp. 249-254
[175.]
C. Wellbrock, L. Ogilvie, D. Hedley, M. Karasarides, J. Martin, D. Niculescu-Duvaz, et al.
V599EB-RAF is an oncogene in melanocytes.
Cancer Res, 64 (2004), pp. 2338-2342
[176.]
H. Sumimoto, M. Miyagishi, H. Miyoshi, S. Yamagata, A. Shimizu, K. Taira, et al.
Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference.
Oncogene, 23 (2004), pp. 6031-6039
[177.]
A. Sharma, N.R. Trivedi, M.A. Zimmerman, D.A. Tuveson, C.D. Smith, G.P. Robertson.
Mutant V599EB-Raf regulates growth and vascular development of malignant melanoma tumors.
Cancer Res, 65 (2005), pp. 2412-2421
[178.]
K.V. Bhatt, L.S. Spofford, G. Aram, M. McMullen, K. Pumiglia, A.E. Aplin.
Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling.
Oncogene, 24 (2005), pp. 3459-3471
[179.]
K.S. Smalley, M. Herlyn.
Loitering with intent: new evidence for the role of BRAF mutations in the proliferation of melanocytic lesions.
J Invest Dermatol, 123 (2004), pp. xvi-xvii
[180.]
H. Yu, R. McDaid, J. Lee, P. Possik, L. Li, S.M. Kumar, et al.
The role of BRAF mutation and p53 inactivation during transformation of a subpopulation of primary human melanocytes.
Am J Pathol, 174 (2009), pp. 2367-2377
[181.]
N. Dhomen, J.S. Reis-Filho, S. da Rocha Dias, R. Hayward, K. Savage, V. Delmas, et al.
Oncogenic Braf induces melanocyte senescence and melanoma in mice.
Cancer Cell, 15 (2009), pp. 294-303
[182.]
W. Zuidervaart, F. van Nieuwpoort, M. Stark, R. Dijkman, L. Packer, A.M. Borgstein, et al.
Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS.
Br J Cancer, 92 (2005), pp. 2032-2038
[183.]
F. Cruz 3rd, B.P. Rubin, D. Wilson, A. Town, A. Schroeder, A. Haley, et al.
Absence of BRAF and NRAS mutations in uveal melanoma.
Cancer Res, 63 (2003), pp. 5761-5766
[184.]
M. Barbacid.
ras genes.
Annu Rev Biochem, 56 (1987), pp. 779-827
[185.]
J.R. Silvius.
Mechanisms of Ras protein targeting in mammalian cells.
J Membr Biol, 190 (2002), pp. 83-92
[186.]
J.L. Bos.
ras oncogenes in human cancer: a review.
Cancer Res, 49 (1989), pp. 4682-4689
[187.]
C.J. Der, T. Finkel, G.M. Cooper.
Biological and biochemical properties of human rasH genes mutated at codon 61.
Cell, 44 (1986), pp. 167-176
[188.]
P. Polakis, F. McCormick.
Structural requirements for the interaction of p21ras with GAP, exchange factors, and its biological effector target.
J Biol Chem, 268 (1993), pp. 9157-9160
[189.]
K. Omholt, S. Karsberg, A. Platz, L. Kanter, U. Ringborg, J. Hansson.
Screening of N-ras codon 61 mutations in paired primary and metastatic cutaneous melanomas: mutations occur early and persist throughout tumor progression.
Clin Cancer Res, 8 (2002), pp. 3468-3474
[190.]
A. Demunter, M. Stas, H. Degreef, C. De Wolf-Peeters, J.J. van den Oord.
Analysis of N- and K-ras mutations in the distinctive tumor progression phases of melanoma.
J Invest Dermatol, 117 (2001), pp. 1483-1489
[191.]
T. Papp, H. Pemsel, R. Zimmermann, R. Bastrop, D.G. Weiss, D. Schiffmann.
Mutational analysis of the N-ras, p53, p16INK4a, CDK4, and MC1R genes in human congenital melanocytic naevi.
J Med Genet, 36 (1999), pp. 610-614
[192.]
L.J. van’t Veer, B.M. Burgering, R. Versteeg, A.J. Boot, D.J. Ruiter, S. Osanto, et al.
N-ras mutations in human cutaneous melanoma from sun-exposed body sites.
Mol Cell Biol, 9 (1989), pp. 3114-3116
[193.]
A. van Elsas, S.F. Zerp, S. van der Flier, K.M. Kruse, C. Aarnoudse, N.K. Hayward, et al.
Relevance of ultraviolet-induced N-ras oncogene point mutations in development of primary human cutaneous melanoma.
Am J Pathol, 149 (1996), pp. 883-893
[194.]
S. Jiveskog, B. Ragnarsson-Olding, A. Platz, U. Ringborg.
N-ras mutations are common in melanomas from sun-exposed skin of humans but rare in mucosal membranes or unexposed skin.
J Invest Dermatol, 111 (1998), pp. 757-761
[195.]
M. Eskandarpour, S. Kiaii, C. Zhu, J. Castro, A.J. Sakko, J. Hansson.
Suppression of oncogenic NRAS by RNA interference induces apoptosis of human melanoma cells.
Int J Cancer, 115 (2005), pp. 65-73
[196.]
C. Hull, A. Larson, S. Leachman.
Pharmacogenetic candidate genes for melanoma.
Pharmacogenomics, 4 (2003), pp. 753-765
[197.]
L.A. Garraway, H.R. Widlund, M.A. Rubin, G. Getz, A.J. Berger, S. Ramaswamy, et al.
Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma.
Nature, 436 (2005), pp. 117-122
[198.]
C. Michaloglou, L.C. Vredeveld, M.S. Soengas, C. Denoyelle, T. Kuilman, C.M. van der Horst, et al.
BRAFE600-associated senescence-like cell cycle arrest of human naevi.
Nature, 436 (2005), pp. 720-724
[199.]
J. Ackermann, M. Frutschi, K. Kaloulis, T. McKee, A. Trumpp, F. Beermann.
Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background.
Cancer Res, 65 (2005), pp. 4005-4011
Copyright © 2009. Academia Española de Dermatología y Venereología
Idiomas
Actas Dermo-Sifiliográficas
Opciones de artículo
Herramientas
es en

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?